SPICES AS ERGOGENIC AIDS: IMPACT ON EXERCISE PERFORMANCE, MUSCLE RECOVERY, AND INFLAMMATION IN ATHLETES – A SYSTEMATIC REVIEW
Abstract
Background: Spices like capsaicin, turmeric, ginger, piperine, garlic, and cinnamon have been used in cooking and folk medicine for centuries. Modern research shows their ergogenic, anti-inflammatory, and antioxidant properties, aiding athletic performance, muscle recovery, and overall health.
Aim: This review analyzes effects of these spices on physically active individuals (mechanisms, benefits, limitations).
Materials and methods: Studies from PubMed, MDPI, Quality in Sport, and Journal of Pharmaceutical Research International on ergogenic, anti-inflammatory, and antioxidant effects of capsaicin, turmeric, ginger, piperine, garlic, and cinnamon in physically active people.
Results: Capsaicin shows thermogenic effects and supports fat metabolism, boosting exercise performance, but GI effects need study. Turmeric, via curcumin, offers anti-inflammatory and antioxidant benefits, reducing muscle damage and speeding recovery despite low bioavailability. Ginger modulates cellular metabolism to aid muscle recovery and ease post-exercise pain. Piperine enhances nutrient bioavailability, improves muscle strength, and optimizes energy metabolism with low-risk toxicity. Garlic reduces oxidative stress and inflammation, strengthens immunity, and relieves muscle fatigue. Cinnamon provides hypoglycemic and antioxidant properties, improving glucose/lipid metabolism and cardiovascular health in athletes.
Conclusions: These spices show promise as phytonutrients in sports medicine. Their anti-inflammatory, antioxidant, and metabolic effects enhance performance and recovery by increasing muscle strength, reducing DOMS, shortening recovery, and lowering inflammation. Synergies like piperine-curcumin amplify efficacy. Challenges like poor bioavailability (e.g., curcumin) and inconsistent evidence require rigorous studies for optimal dosages, formulations, and protocols.
References
Jiang, T. A. (2019). Health benefits of culinary herbs and spices. Journal of AOAC International, 102(2), 395–411. https://doi.org/10.5740/jaoacint.18-0418
Kumar, A., Harsha, C., Parama, D., Girisa, S., Daimary, U. D., Mao, X., & Kunnumakkara, A. B. (2021). Current clinical developments in curcumin-based therapeutics for cancer and chronic diseases. Phytotherapy Research, 35(12), 6768–6801. https://doi.org/10.1002/ptr.7264
Wang, L., Meng, Q., & Su, C. H. (2024). From food supplements to functional foods: Emerging perspectives on post-exercise recovery nutrition. Nutrients, 16(23), 4081. https://doi.org/10.3390/nu16234081
Tsao, J. P., Bernard, J. R., Tu, T. H., Hsu, H. C., Chang, C. C., Liao, S. F., & Cheng, I. S. (2023). Garlic supplementation attenuates cycling exercise-induced oxidative inflammation but fails to improve time trial performance in healthy adults. Journal of the International Society of Sports Nutrition, 20(1), 2206809. https://doi.org/10.1080/15502783.2023.2206809
Kisiolek, J. N., Kheredia, N., Flores, V., Ramani, A., Lisano, J., Johnston, N., & Stewart, L. K. (2022). Short term, oral supplementation with optimized curcumin does not impair performance improvements associated with high intensity interval training. Journal of Dietary Supplements, 19(6), 733–746. https://doi.org/10.1080/19390211.2021.1936335
da Silva, B. V. C., Mota, G. R., Marocolo, M., Martin, J. S., & Prado, L. S. (2022). Acute supplementation with capsaicin enhances upper-limb performance in male jiu-jitsu athletes. Sports, 10(8), 120. https://doi.org/10.3390/sports10080120
Delecroix, B., Abaïdia, A. E., Leduc, C., Dawson, B., & Dupont, G. (2017). Curcumin and piperine supplementation and recovery following exercise induced muscle damage: A randomized controlled trial. Journal of Sports Science and Medicine, 16(1), 147–153.
Mashhadi, N. S., Ghiasvand, R., Askari, G., Feizi, A., Hariri, M., Darvishi, L., et al. (2013). Influence of ginger and cinnamon intake on inflammation and muscle soreness endued by exercise in Iranian female athletes. International Journal of Preventive Medicine, 4(Suppl 1), S11–S15.
Kulicka, J., Bychowski, M., Kwaśna, J., Załęska, A., Kaźmierczyk, I., Lenart, K., et al. (2024). Unlocking the power of cinnamon: A detailed review of cinnamon therapeutic effects in chronic disease management. Quality in Sport, 28, 56834. https://doi.org/10.12775/QS.2024.28.56834
Best, R., McDonald, K., Hurst, P., & Pickering, C. (2021). Can taste be ergogenic? European Journal of Nutrition, 60(1), 45–54. https://doi.org/10.1007/s00394-020-02274-5
Giuriato, G., Venturelli, M., Matias, A., Soares, E. M. K. V. K., Gaetgens, J., Frederick, K. A., & Ives, S. J. (2022). Capsaicin and its effect on exercise performance, fatigue and inflammation after exercise. Nutrients, 14(2), 232. https://doi.org/10.3390/nu14020232
von Ah Morano, A. E., Padilha, C. S., Soares, V. A. M., Andrade Machado, F., Hofmann, P., Rossi, F. E., & Lira, F. S. (2020). Capsaicin analogue supplementation does not improve 10 km running time-trial performance in male amateur athletes: A randomized, crossover, double-blind and placebo-controlled study. Nutrients, 13(1), 34. https://doi.org/10.3390/nu13010034
McDaid, B., Wardenaar, F. C., Woodside, J. V., Neville, C. E., Tobin, D., Madigan, S., & Nugent, A. P. (2023). Athletes perceived level of risk associated with botanical food supplement use and their sources of information. International Journal of Environmental Research and Public Health, 20(13), 6244. https://doi.org/10.3390/ijerph20136244
Daniel Vasile, P. R., Patricia, M. L., Marta, M. S., & Laura, E. (2024). Evaluation of curcumin intake in reducing exercise-induced muscle damage in athletes: A systematic review. Journal of the International Society of Sports Nutrition, 21(1), 2434217. https://doi.org/10.1080/15502783.2024.2434217
Jäger, R., Purpura, M., & Kerksick, C. M. (2019). Eight weeks of a high dose of curcumin supplementation may attenuate performance decrements following muscle-damaging exercise. Nutrients, 11(7), 1692. https://doi.org/10.3390/nu11071692
Bai, K. Y., Liu, G. H., Fan, C. H., Kuo, L. T., Hsu, W. H., Yu, P. A., & Chen, C. L. (2023). 12-week curcumin supplementation may relieve postexercise muscle fatigue in adolescent athletes. Frontiers in Nutrition, 9, 1078108. https://doi.org/10.3389/fnut.2022.1078108
Bańkowski, S., Wójcik, Z. B., Grabara, M., Ozner, D., Pałka, T., Stanek, A., & Sadowska-Krępa, E. (2025). Does curcumin supplementation affect inflammation, blood count and serum brain-derived neurotropic factor concentration in amateur long-distance runners? PLOS ONE, 20(1), e0317446. https://doi.org/10.1371/journal.pone.0317446
Higashikawa, F., Nakaniida, Y., Li, H., Liang, L., Kanno, K., Ogawa-Ochiai, K., & Kiuchi, Y. (2024). Beneficial effects of ginger extract on eye fatigue and shoulder stiffness: A randomized, double-blind, and placebo-controlled parallel study. Nutrients, 16(16), 2715. https://doi.org/10.3390/nu16162715
Kausar, T., Anwar, S., Hanan, E., Yaseen, M., Aboelnaga, S. M. H., & Azad, Z. R. A. A. (2021). Therapeutic role of ginger (Zingiber officinale): A review. Journal of Pharmaceutical Research International, 33(29B), 9–16. https://doi.org/10.9734/jpri/2021/v33i29B31584
Öz, B., Orhan, C., Tuzcu, M., Şahin, N., Özercan, İ. H., Demirel Öner, P., Koca, S. S., Juturu, V., & Şahin, K. (2021). Ginger extract suppresses the activations of NF-κB and Wnt pathways and protects inflammatory arthritis. European Journal of Rheumatology, 8(4), 196–201. https://doi.org/10.5152/eujrheum.2020.20192
Mohd Sahardi, N. F. N., Jaafar, F., Tan, J. K., Mad Nordin, M. F., & Makpol, S. (2023). Elucidating the pharmacological properties of Zingiber officinale Roscoe (ginger) on muscle ageing by untargeted metabolomic profiling of human myoblasts. Nutrients, 15(21), 4520. https://doi.org/10.3390/nu15214520
Hattori, S., Omi, N., Yang, Z., Nakamura, M., & Ikemoto, M. (2021). Effect of ginger extract ingestion on skeletal muscle glycogen contents and endurance exercise in male rats. Physical Activity and Nutrition, 25(2), 15–19. https://doi.org/10.20463/pan.2021.0010
Fernández-Lázaro, D., Mielgo-Ayuso, J., Córdova Martínez, A., & Seco-Calvo, J. (2020). Iron and physical activity: Bioavailability enhancers, properties of black pepper (Bioperine®) and potential applications. Nutrients, 12(6), 1886. https://doi.org/10.3390/nu12061886
Herskind, J., Ørtenblad, N., Cheng, A. J., Pedersen, P., & Overgaard, K. (2024). Piperine enhances contractile force in slow- and fast-twitch muscle. The Journal of Physiology, 602(12), 2807–2822. https://doi.org/10.1113/JP285995
Kim, J., Lee, K. P., Lee, D. W., & Lim, K. (2017). Piperine enhances carbohydrate/fat metabolism in skeletal muscle during acute exercise in mice. Nutrition & Metabolism, 14, 43. https://doi.org/10.1186/s12986-017-0194-2
Karimi, M., Javadi, M., Sharifi, M., Valizadeh, F., Karimi, M. A., & Asbaghi, O. (2025). Effects of curcuminoids plus piperine co-supplementation on liver enzymes and inflammation in adults: A GRADE-assessed systematic review and meta-analysis. Food Science & Nutrition, 13(7), e70588. https://doi.org/10.1002/fsn3.70588
Alschuler, L., Chiasson, A. M., Horwitz, R., Sternberg, E., Crocker, R., Weil, A., & Maizes, V. (2022). Integrative medicine considerations for convalescence from mild-to-moderate COVID-19 disease. Explore, 18(2), 140–148. https://doi.org/10.1016/j.explore.2020.12.005
Alam, A. S., Samiasih, A., Mubin, M. F., Pranata, S., & Dhamanik, R. (2024). Types of nursing intervention on improving quality of life among patients with diabetes mellitus: A systematic review. Current Diabetes Reviews, 20(3), e290823220467. https://doi.org/10.2174/1573399820666230829103016
Ried, K., Paye, Y., Beale, D., & Sali, A. (2025). Kyolic aged garlic extract improves aerobic fitness in middle-aged recreational endurance athletes: A randomized double-blind placebo-controlled 3 month trial. Experimental and Therapeutic Medicine, 29(4), 86. https://doi.org/10.3892/etm.2025.12836
Amirkhani, Z., Gholi, A. M., Asghari, S., Hakak, D., Pouryousef, M., Yahyaei, B., & Ziaolhagh, S. J. (2025). The effect of garlic and stevia extract with aerobic exercise on hypothalamic leptin and ghrelin receptor mRNA expression and insulin resistance in obese rats. BMC Complementary Medicine and Therapies, 25(1), 104. https://doi.org/10.1186/s12906-025-04756-7
Moreno, E. K. G., de Macêdo, I. Y. L., Batista, E. A., Machado, F. B., Santos, G. R., Andrade, D. M. L., et al. (2022). Evaluation of antioxidant potential of commercial cinnamon samples and its vasculature effects. Oxidative Medicine and Cellular Longevity, 2022, 1992039. https://doi.org/10.1155/2022/1992039
Tayebi, S. M., Nouri, A. H., Tartibian, B., Ahmadabadi, S., Basereh, A., & Jamhiri, I. (2024). Effects of swimming training in hot and cold temperatures combined with cinnamon supplementation on HbA1C levels, TBC1D1, and TBC1D4 in diabetic rats. Nutrition & Diabetes, 14(1), 1. https://doi.org/10.1038/s41387-023-00256-0
Gheflati, A., Pahlavani, N., Nattagh-Eshtivani, E., Namkhah, Z., Ghazvinikor, M., Ranjbar, G., et al. (2023). The effects of cinnamon supplementation on adipokines and appetite-regulating hormones: A systematic review of randomized clinical trials. Avicenna Journal of Phytomedicine, 13(5), 463–474. https://doi.org/10.22038/AJP.2022.21538
Arammi, S., Sahragard, M., Seyed, A., Salehi, O., Hosseini, S. A., & Mosallanezhad, Z. (2024). The effects of swimming training at different temperatures along with cinnamon supplementation on liver enzymes and thyroid hormones in diabetic rats. Avicenna Journal of Phytomedicine, 14(1), 126–137. https://doi.org/10.22038/AJP.2023.23248
Jiao, P., An, Y., Wu, S., Li, H., & Li, G. (2024). Cinnamaldehyde attenuates the expression of IBA1 and GFAP to inhibit glial cell activation and inflammation in the MPTP-induced acute Parkinson’s disease model. Parkinson’s Disease, 2024, 9973140. https://doi.org/10.1155/padi/9973140
Tayebi, S. M., Motaghinasab, S., Eslami, R., Ahmadabadi, S., Basereh, A., & Jamhiri, I. (2024). Impact of 8-week cold- and warm-water swimming training combined with cinnamon consumption on serum METRNL, HDAC5, and insulin resistance levels in diabetic male rats. Heliyon, 10(8), e29742. https://doi.org/10.1016/j.heliyon.2024.e29742
Gu, D. T., Tung, T. H., Jiesisibieke, Z. L., Chien, C. W., & Liu, W. Y. (2022). Safety of cinnamon: An umbrella review of meta-analyses and systematic reviews of randomized clinical trials. Frontiers in Pharmacology, 12, 790901. https://doi.org/10.3389/fphar.2021.790901
Views:
45
Downloads:
20
Copyright (c) 2025 Michalina Chodór, Maciej Kokoszka, Natalia Nafalska, Małgorzata Stopyra, Krzysztof Feret, Gabriela Szpila, Joanna Gadzinowska, Aleksandra Tomaszewska, Angelika Lewandowska, Agata Andrzejczyk

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.