THE POTENTIAL OF GLP-1 IN THE TREATMENT OF AUTOIMMUNE DISEASES: A REVIEW OF MECHANISMS AND CLINICAL DATA
Abstract
Introduction: Autoimmune diseases are a heterogeneous group of disorders characterized by dysregulated immune responses against self-antigens, leading to chronic inflammation and progressive organ damage. Despite advances in immunosuppressive and biologic therapies improving outcomes in conditions like systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS), a subset of patients exhibit suboptimal responses or experience significant adverse effects. Additionally, access to certain biologic treatments may be limited by strict eligibility criteria. Metabolic comorbidities such as obesity, insulin resistance, and type 2 diabetes are prevalent in patients with autoimmune diseases and can exacerbate inflammation, accelerate organ damage, and diminish therapeutic efficacy. Glucagon-like peptide-1 receptor agonists (GLP-1RA), a class of drugs originally developed for type 2 diabetes and obesity, have demonstrated pleiotropic effects extending beyond glycemic control, including modulation of immune cell function, suppression of pro-inflammatory cytokine release, and improvement of endothelial function. These immunometabolic properties suggest that GLP-1RA could serve as promising adjunctive agents in managing autoimmune diseases, particularly in patients with coexisting metabolic disturbances.
Materials and Methods: The article was written based on scientific papers available on PubMed and Google Scholar
Key findings: Evidence gathered indicates that GLP-1 receptor agonists exert significant immunomodulatory and metabolic effects that may translate into clinical benefits across multiple autoimmune diseases. In psoriasis and psoriatic arthritis, where chronic Th1/Th17-driven inflammation often coexists with obesity and insulin resistance, GLP-1RA therapy has been associated with improvements in inflammatory markers and disease severity indices (such as PASI for skin lesions and DAPSA for joint disease), alongside substantial weight reduction and better glycemic control. Multiple sclerosis models and preliminary clinical observations suggest that GLP-1RA can attenuate neuroinflammation and promote neuroprotection: these agents reduce pathogenic Th1/Th17 cell activity, inhibit microglial activation, and may enhance remyelination processes, thereby potentially decreasing relapse rates and neurological damage. In systemic lupus erythematosus, a small retrospective analysis indicated that adjunctive GLP-1RA use led to significant weight loss and improved metabolic profiles without provoking new organ involvement or severe flares; notably, no acceleration of lupus disease activity was seen over short-term follow-up, aligning with GLP-1RA’s known cardiovascular and renal protective effects. (An isolated case of GLP-1RA–induced lupus has been reported, underscoring the need for vigilance.) In rheumatoid arthritis, in vitro studies on fibroblast-like synoviocytes demonstrated that GLP-1RA (e.g., lixisenatide, dulaglutide) can suppress the production of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) and matrix-degrading enzymes (MMP-1, -3, -13) by inhibiting NF-κB and MAPK signaling pathways, thereby potentially protecting joint cartilage and bone. Early clinical studies and case series in RA patients (especially those with coexisting type 2 diabetes or obesity) reported reduced disease activity scores (DAS28), lower C-reactive protein and erythrocyte sedimentation rate levels, fewer swollen joints, and diminished morning stiffness during GLP-1RA treatment, along with the expected weight reduction and improved insulin sensitivity. In type 1 diabetes mellitus, which involves autoimmune β-cell destruction, adjunctive therapy with GLP-1RA (such as exenatide, liraglutide, or semaglutide) has shown promise in patients with residual β-cell function. These agents consistently reduced exogenous insulin requirements and facilitated modest improvements in glycemic control (including lower HbA1c and increased time-in-range on continuous glucose monitoring) while promoting weight loss. In honeymoon-phase or early type 1 diabetes mellitus GLP-1RA addition even enabled temporary insulin independence in a few cases. However, across these studies, gastrointestinal side effects were common, and a few instances of euglycemic ketosis were noted, indicating that careful patient selection and monitoring are necessary. Overall, the integration of GLP-1RA into the treatment of autoimmune diseases has yielded partial improvements in disease control and significant benefits in managing metabolic comorbidities, though these benefits are often contingent on disease severity and the presence of a metabolic-inflammatory phenotype. No evidence to date suggests that GLP-1RA can replace standard immunotherapies; rather, they function as complementary agents that address an often overlooked metabolic component of autoimmunity.
Conclusions: Autoimmune diseases remain a therapeutic challenge, as many patients achieve only incomplete remission and continue to endure disease-related damage and comorbidities under current treatment paradigms. Glucagon-like peptide-1 receptor agonists offer a novel, multidimensional approach that simultaneously targets metabolic dysregulation and immune aberrations. The current body of evidence indicates that GLP-1RA can confer additional clinical benefits – such as reducing systemic inflammation, improving disease activity metrics, aiding weight loss, and lowering cardiovascular risk – especially in patients whose autoimmune disease is compounded by obesity or insulin resistance. These agents represent a promising adjunct to existing therapies, potentially bridging a gap between metabolic syndrome management and immunomodulation in autoimmune care. However, their therapeutic impact appears to be partial and disease-specific, often providing symptomatic relief or slowing disease activity rather than inducing full remission. Limitations such as high relapse rates upon GLP-1RA discontinuation (noted in conditions like hidradenitis suppurativa and suggested by analogy in other diseases), the risk of side effects (gastrointestinal intolerance, rare immune reactions), and the absence of long-term safety data in autoimmune populations underscore that GLP-1RA are not a standalone solution. The complex interplay of immune and metabolic pathways in autoimmunity highlighted by these findings reinforces the need for further research. Well-designed, large-scale clinical trials are urgently needed to confirm the efficacy and safety of GLP-1RA across different autoimmune diseases, to determine optimal patient selection criteria, and to elucidate the mechanisms by which metabolic modulation can alter immune-driven disease courses. Such studies will pave the way for the development of more targeted and personalized treatment strategies, potentially solidifying the role of GLP-1RA as part of a multidimensional therapeutic approach to autoimmune disorders.
References
Arnaud, L., & Tektonidou, M. G. (2020). Long-term outcomes in systemic lupus erythematosus: Trends over time and major contributors. Rheumatology, 59(Suppl. 5), v29–v38. https://doi.org/10.1093/rheumatology/keaa382
Burmester, G. R., & Pope, J. E. (2017). Novel treatment strategies in rheumatoid arthritis. Lancet, 389(10086), 2338–2348. https://doi.org/10.1016/S0140-6736(17)31491-5
Doshi, A., & Chataway, J. (2016). Multiple sclerosis, a treatable disease. Clinical Medicine, 16(Suppl. 6), s53–s59. https://doi.org/10.7861/clinmedicine.16-6-s53
Mela, A., Poniatowski, Ł. A., Drop, B., Furtak-Niczyporuk, M., Jaroszyński, J., Wrona, W., Staniszewska, A., Dąbrowski, J., Czajka, A., Jagielska, B., Wojciechowska, M., & Niewada, M. (2020). Overview and analysis of the cost of drug programs in Poland: Public payer expenditures and coverage of cancer and non-neoplastic diseases related drug therapies from 2015–2018. Frontiers in Pharmacology, 11, 1123. https://doi.org/10.3389/fphar.2020.01123
Taylor, E. B. (2021). The complex role of adipokines in obesity, inflammation, and autoimmunity. Clinical Science, 135(6), 731–752. https://doi.org/10.1042/CS20200895
Hemminki, K., Liu, X., & Försti, A. (2015). Subsequent type 2 diabetes in patients with autoimmune disease. Scientific Reports, 5, 13871. https://doi.org/10.1038/srep13871
Powell-Wiley, T. M., Poirier, P., Burke, L. E., Després, J. P., Gordon-Larsen, P., Lavie, C. J., Lear, S. A., Ndumele, C. E., Neeland, I. J., Sanders, P., & St-Onge, M. P. (2021). Obesity and cardiovascular disease: A scientific statement from the American Heart Association. Circulation, 143(21), e984–e1010. https://doi.org/10.1161/CIR.0000000000000973
Asenjo-Lobos, C., González, L., Bulnes, J. F., Roque, M., Muñoz Venturelli, P., & Rodríguez, G. M. (2024). Cardiovascular events risk in patients with systemic autoimmune diseases: A prognostic systematic review and meta-analysis. Clinical Research in Cardiology, 113(2), 246–259. https://doi.org/10.1007/s00392-023-02291-4
Dey, M., Zhao, S. S., Moots, R. J., Bergstra, S. A., Landewe, R. B., & Goodson, N. J. (2022). The association between increased body mass index and response to conventional synthetic disease-modifying anti-rheumatic drug treatment in rheumatoid arthritis: Results from the METEOR database. Rheumatology, 61(2), 713–722.
Singh, S., Facciorusso, A., Singh, A. G., Vande Casteele, N., Zarrinpar, A., Prokop, L. J., Grunvald, E. L., Curtis, J. R., & Sandborn, W. J. (2018). Obesity and response to anti-tumor necrosis factor-α agents in patients with select immune-mediated inflammatory diseases: A systematic review and meta-analysis. PLoS One, 13(5), e0195123. https://doi.org/10.1371/journal.pone.0195123
Shan, J., & Zhang, J. (2019). Impact of obesity on the efficacy of different biologic agents in inflammatory diseases: A systematic review and meta-analysis. Joint Bone Spine, 86(2), 173–183. https://doi.org/10.1016/j.jbspin.2018.03.007
Pastore, I., Lazzaroni, E., Assi, E., Seelam, A. J., El Essawy, B., Jang, J., Loretelli, C., D’Addio, F., Berra, C., Ben Nasr, M., Zuccotti, G., & Fiorina, P. (2022). The anti-inflammatory and immunological properties of GLP-1 receptor agonists. Pharmacological Research, 182, 106320. https://doi.org/10.1016/j.phrs.2022.106320
Chen, J., Mei, A., Wei, Y., Li, C., Qian, H., Min, X., Yang, H., Dong, L., Rao, X., & Zhong, J. (2022). GLP-1 receptor agonist as a modulator of innate immunity. Frontiers in Immunology, 13, 997578. https://doi.org/10.3389/fimmu.2022.997578
Sieminska, I., Pieniawska, M., & Grzywa, T. M. (2024). The immunology of psoriasis—Current concepts in pathogenesis. Clinical Reviews in Allergy & Immunology, 66, 164–191. https://doi.org/10.1007/s12016-024-08991-7
Lee, B. W., & Moon, S. J. (2023). Inflammatory cytokines in psoriatic arthritis: Understanding pathogenesis and implications for treatment. International Journal of Molecular Sciences, 24(14), 11662. https://doi.org/10.3390/ijms241411662
Queiro, R., Lorenzo, A. M., Tejón, P., Coto, P., & Pardo, E. (2019). Obesity in psoriatic arthritis: Comparative prevalence and associated factors. Medicine, 98(28), e16400. https://doi.org/10.1097/MD.0000000000016400
Armstrong, A., Harskamp, C., & Armstrong, E. (2012). The association between psoriasis and obesity: A systematic review and meta-analysis of observational studies. Nutrition & Diabetes, 2, e54. https://doi.org/10.1038/nutd.2012.26
Mease, P. J. (2011). Measures of psoriatic arthritis: Tender and swollen joint assessment, Psoriasis Area and Severity Index (PASI), Nail Psoriasis Severity Index (NAPSI), modified Nail Psoriasis Severity Index (mNAPSI), Mander/Newcastle Enthesitis Index (MEI), Leeds Enthesitis Index (LEI), Spondyloarthritis Research Consortium of Canada (SPARCC), Maastricht Ankylosing Spondylitis Enthesis Score (MASES), Leeds Dactylitis Index (LDI), patient global for psoriatic arthritis, Dermatology Life Quality Index (DLQI), Psoriatic Arthritis Quality of Life (PsAQOL), Functional Assessment of Chronic Illness Therapy–Fatigue (FACIT-F), Psoriatic Arthritis Response Criteria (PsARC), Psoriatic Arthritis Joint Activity Index (PsAJAI), Disease Activity in Psoriatic Arthritis (DAPSA), and Composite Psoriatic Disease Activity Index (CPDAI). Arthritis Care & Research (Hoboken), 63(Suppl. 11), S64–S85. https://doi.org/10.1002/acr.20577
Barros, G., Durán, P., Vera, I., & Bermúdez, V. (2022). Exploring the links between obesity and psoriasis: A comprehensive review. International Journal of Molecular Sciences, 23(14), 7499. https://doi.org/10.3390/ijms23147499
Xu, Z., Ma, K., Zhai, Y., Wang, J., & Li, Y. (2025). Obesity mediates the association between psoriasis and diabetes incidence: a population-based study. Diabetology & Metabolic Syndrome, 17(1), 51. https://doi.org/10.1186/s13098-025-01622-x
Xu, Q., Zhang, X., Li, T., & Shao, S. (2022). Exenatide regulates Th17/Treg balance via PI3K/Akt/FoxO1 pathway in db/db mice. Molecular Medicine, 28(1), 144. https://doi.org/10.1186/s10020-022-00574-6
Petković-Dabić, J., Binić, I., Carić, B., Božić, L., Umičević-Šipka, S., Bednarčuk, N., Dabić, S., Šitum, M., Popović-Pejičić, S., & Stojiljković, M. P. (2025). Effects of semaglutide treatment on psoriatic lesions in obese patients with type 2 diabetes mellitus: An open-label, randomized clinical trial. Biomolecules, 15(1), 46. https://doi.org/10.3390/biom15010046
Drucker, D. J., & Rosen, C. F. (2011). Glucagon-like peptide-1 (GLP-1) receptor agonists, obesity and psoriasis: Diabetes meets dermatology. Diabetologia, 54(11), 2741–2744. https://doi.org/10.1007/s00125-011-2297-z
Wingerchuk, D. M., Lucchinetti, C. F., & Noseworthy, J. H. (2001). Multiple sclerosis: current pathophysiological concepts. Laboratory Investigation, 81(3), 263–281. https://doi.org/10.1038/labinvest.3780235
Kaye, A. D., Lacey, J., Le, V., Fazal, A., Boggio, N. A., Askins, D. H., et al. (2024). The evolving role of monomethyl fumarate treatment as pharmacotherapy for relapsing-remitting multiple sclerosis. Cureus, 16(4), e57714. https://doi.org/10.7759/cureus.57714
Hart, F. M., & Bainbridge, J. (2016). Current and emerging treatment of multiple sclerosis. American Journal of Managed Care, 22(6 Suppl), s159–s170.
Hartung, D. M., Bourdette, D. N., Ahmed, S. M., & Whitham, R. H. (2015). The cost of multiple sclerosis drugs in the US and the pharmaceutical industry: Too big to fail? Neurology, 84(21), 2185–2192. https://doi.org/10.1212/WNL.0000000000001608
Gentilella, R., Pechtner, V., Corcos, A., & Consoli, A. (2019). Glucagon-like peptide-1 receptor agonists in type 2 diabetes treatment: Are they all the same? Diabetes/Metabolism Research and Reviews, 35(1), e3070. https://doi.org/10.1002/dmrr.3070
Alharbi, S. H. (2024). Anti-inflammatory role of glucagon-like peptide 1 receptor agonists and its clinical implications. Therapeutic Advances in Endocrinology and Metabolism, 15. https://doi.org/10.1177/20420188231222367
Sango, K., Takaku, S., Tsukamoto, M., Niimi, N., & Yako, H. (2022). Glucagon-like peptide-1 receptor agonists as potential myelination-inducible and anti-demyelinating remedies. Frontiers in Cell and Developmental Biology, 10, 950623. https://doi.org/10.3389/fcell.2022.950623
Ogata, T., Iijima, S., Hoshikawa, S., Miura, T., Yamamoto, S.-I., & Oda, H. (2004). Opposing extracellular signal-regulated kinase and Akt pathways control Schwann cell myelination. Journal of Neuroscience, 24(30), 6724–6732. https://doi.org/10.1523/JNEUROSCI.5520-03.2004
Chiou, H., Lin, M., Hsiao, P., Chen, C., Chiao, S., Lin, T., … & Lin, M. (2019). Dulaglutide modulates the development of tissue-infiltrating Th1/Th17 cells and the pathogenicity of encephalitogenic Th1 cells in the central nervous system. International Journal of Molecular Sciences, 20(7), 1584. https://doi.org/10.3390/ijms20071584
Fujita, S., Ushio, S., Ozawa, N., Masuguchi, K., Kawashiri, T., Oishi, R., … & Egashira, N. (2015). Exenatide facilitates recovery from oxaliplatin-induced peripheral neuropathy in rats. PLOS ONE, 10(11), e0141921. https://doi.org/10.1371/journal.pone.0141921
Sango, K., Takaku, S., Tsukamoto, M., Niimi, N., & Yako, H. (2022). Glucagon-like peptide-1 receptor agonists as potential myelination-inducible and anti-demyelinating remedies. Frontiers in Cell and Developmental Biology, 10, 950623. https://doi.org/10.3389/fcell.2022.950623
Kaye, A., Sala, K., Abbott, B., Dicke, A., Johnson, L., Wilson, P., … & Varrassi, G. (2024). The role of glucagon-like peptide-1 agonists in the treatment of multiple sclerosis: a narrative review. Cureus, 16(4), e67232. https://doi.org/10.7759/cureus.67232
Hölscher, C. (2021). Protective properties of GLP-1 and associated peptide hormones in neurodegenerative disorders. British Journal of Pharmacology, 179(4), 695–714. https://doi.org/10.1111/bph.15508
Hardoňová, M., Šiarnik, P., Siváková, M., Suchá, B., Penešová, A., Rádiková, Ž., … & Turčáni, P. (2023). Endothelial function in patients with multiple sclerosis: The role of GLP-1 agonists, lipoprotein subfractions, and redox balance. International Journal of Molecular Sciences, 24(13), 11162. https://doi.org/10.3390/ijms241311162
Tsokos, G. C. (2011). Systemic lupus erythematosus. New England Journal of Medicine, 365(22), 2110–2121. https://doi.org/10.1056/NEJMra1100359
Carlucci, P. M., Purmalek, M. M., Dey, A. K., Temesgen-Oyelakin, Y., Sakhardande, S., Joshi, A. A., et al. Neutrophil subsets and their gene signature associate with vascular inflammation and coronary atherosclerosis in lupus. JCI Insight [Internet]. 2018; 3(8). Available from: http://dx.doi.org/10.1172/jci.insight.99276
Manzi, S., Meilahn, E. N., Rairie, J. E., Conte, C. G., Medsger, T. A., Jr., & Jansen-McWilliams, L. (1997). Age-specific incidence rates of myocardial infarction and angina in women with systemic lupus erythematosus: Comparison with the Framingham Study. American Journal of Epidemiology, 145(5), 408–415. https://doi.org/10.1093/aje/145.5.408
Purmalek, M. M., Carlucci, P. M., Dey, A. K., Sampson, M., Temesgen-Oyelakin, Y., Sakhardande, S., et al. (2019). Association of lipoprotein subfractions and glycoprotein acetylation with coronary plaque burden in SLE. Lupus Science & Medicine, 6(1), e000332. https://doi.org/10.1136/lupus-2019-000332
Ugarte-Gil, M. F., Mak, A., Leong, J., Dharmadhikari, B., Kow, N. Y., Reátegui-Sokolova, C., et al. (2021). Impact of glucocorticoids on the incidence of lupus-related major organ damage: a systematic literature review and meta-regression analysis of longitudinal observational studies. Lupus Science & Medicine, 8(1), e000590. https://doi.org/10.1136/lupus-2021-000590
Castellanos, V., Workneh, H., Malik, A., & Mehta, B. (2024). Semaglutide-induced lupus erythematosus with multiorgan involvement. Cureus, 16(3), e55324. https://doi.org/10.7759/cureus.55324
Kamiński, M., Miętkiewska-Dolecka, M., Kręgielska-Narożna, M., & Bogdański, P. (2024). Popularity of surgical and pharmacological obesity treatment methods searched by Google users: The retrospective analysis of Google Trends statistics in 2004–2022. Obesity Surgery, 34(3), 882–891. https://doi.org/10.1007/s11695-023-06971-y
Carlucci, P. M., Cohen, B., Saxena, A., Belmont, H. M., Masson, M., Gold, H. T., et al. (2024). A retrospective evaluation of glucagon-like peptide-1 receptor agonists in systemic lupus erythematosus patients. Rheumatology, keae547. https://doi.org/10.1093/rheumatology/keae547
Karacabeyli, D., & Lacaille, D. (2024). Glucagon-like peptide 1 receptor agonists in patients with inflammatory arthritis or psoriasis: A scoping review. Journal of Clinical Rheumatology, 30(1), 26–31. https://doi.org/10.1097/RHU.0000000000001949
Mehdi, S. F., Pusapati, S., Anwar, M. S., Lohana, D., Kumar, P., Nandula, S. A., et al. (2023). Glucagon-like peptide-1: a multi-faceted anti-inflammatory agent. Frontiers in Immunology, 14, 1148209. https://doi.org/10.3389/fimmu.2023.1148209
Saxena, R., Mahajan, T., & Mohan, C. (2011). Lupus nephritis: current update. Arthritis Research & Therapy, 13(5), 240. https://doi.org/10.1186/ar3378
Bilgin, E., Venerito, V., & Bogdanos, D. P. (2025). Glucagon-like peptide-1 (GLP-1) receptor agonists in rheumatology: A review of current evidence and future directions. Autoimmunity Reviews, 24(9), 103864. https://doi.org/10.1016/j.autrev.2025.103864
Du, X., Zhang, H., Zhang, W., Wang, Q., Wang, W., Ge, G., Bai, J., Guo, X., Zhang, Y., Jiang, X., Gu, J., Xu, Y., & Geng, D. (2019). The protective effects of lixisenatide against inflammatory response in human rheumatoid arthritis fibroblast-like synoviocytes. International Immunopharmacology, 75, 105732. https://doi.org/10.1016/j.intimp.2019.105732
Zheng, W., Pan, H., Wei, L., Gao, F., & Lin, X. (2019). Dulaglutide mitigates inflammatory response in fibroblast-like synoviocytes. International Immunopharmacology, 74, 105649. https://doi.org/10.1016/j.intimp.2019.05.034
Tao, Y., Ge, G., Wang, Q., Wang, W., Zhang, W., Bai, J., Lin, J., Shen, J., Guo, X., Xu, Y., & Geng, D. (2019). Exenatide ameliorates inflammatory response in human rheumatoid arthritis fibroblast-like synoviocytes. IUBMB Life, 71(7), 969–977. https://doi.org/10.1002/iub.2031
Xu, X., Lin, L., Chen, P., Yu, Y., Chen, S., Chen, X., & Shao, Z. (2019). Treatment with liraglutide, a glucagon-like peptide-1 analogue, improves effectively the skin lesions of psoriasis patients with type 2 diabetes: A prospective cohort study. Diabetes Research and Clinical Practice, 150, 167–173. https://doi.org/10.1016/j.diabres.2019.03.002
Gavazova, V., & Pashkunova, S. (2024). New therapeutic opportunities shared by obesity, type 2 diabetes and rheumatoid arthritis. Endocrine Abstracts, 99, EP24. https://doi.org/10.1530/endoabs.99.ep24
Karacabeyli, D., Lacaille, D., Lu, N., McCormick, N., Xie, H., Choi, H. K., & Avina-Zubieta, J. A. (2024). Mortality and major adverse cardiovascular events after glucagon-like peptide-1 receptor agonist initiation in patients with immune-mediated inflammatory diseases and type 2 diabetes: A population-based study. PLOS ONE, 19(8), e0308533. https://doi.org/10.1371/journal.pone.0308533
Guyton, J., Jeon, M., & Brooks, A. (2019). Glucagon-like peptide 1 receptor agonists in type 1 diabetes mellitus. American Journal of Health-System Pharmacy, 76(21), 1739–1748. https://doi.org/10.1093/ajhp/zxz179
Raman, V. S., Mason, K. J., Rodriguez, L. M., Hassan, K., Yu, X., Bomgaars, L., & Heptulla, R. A. (2010). The role of adjunctive exenatide therapy in pediatric type 1 diabetes. Diabetes Care, 33(6), 1294–1296. https://doi.org/10.2337/dc09-1959
Rother, K. I., Spain, L. M., Wesley, R. A., Digon, B. J., 3rd, Baron, A., Chen, K., Nelson, P., Dosch, H.-M., Palmer, J. P., Brooks-Worrell, B., Ring, M., & Harlan, D. M. (2009). Effects of exenatide alone and in combination with daclizumab on beta-cell function in long-standing type 1 diabetes. Diabetes Care, 32(12), 2251–2257. https://doi.org/10.2337/dc09-0773
Hari Kumar, K. V. S., Shaikh, A., & Prusty, P. (2013). Addition of exenatide or sitagliptin to insulin in new-onset type 1 diabetes: A randomized, open-label study. Diabetes Research and Clinical Practice, 100(2), e55–e58. https://doi.org/10.1016/j.diabres.2013.01.020
Traina, A. N., Lull, M. E., Hui, A. C., Zahorian, T. M., & Lyons-Patterson, J. (2014). Once-weekly exenatide as adjunct treatment of type 1 diabetes mellitus in patients receiving continuous subcutaneous insulin infusion therapy. Canadian Journal of Diabetes, 38(4), 269–272. https://doi.org/10.1016/j.jcjd.2013.10.006
Herold, K. C., Reynolds, J., Dziura, J., Baidal, D., Gaglia, J., Gitelman, S. E., Gottlieb, P. A., Marks, J., Philipson, L. H., Pop-Busui, R., & Weinstock, R. S. (2020). Exenatide extended release in patients with type 1 diabetes with and without residual insulin production. Diabetes, Obesity and Metabolism, 22(11), 2045–2054. https://doi.org/10.1111/dom.14256
Ahrén, B., Hirsch, I. B., Pieber, T. R., Mathieu, C., Gómez-Peralta, F., Hansen, T. K., Philotheou, A., Birch, S., Christiansen, E., Jensen, T. J., Buse, J. B., & ADJUNCT TWO Investigators. (2016). Efficacy and safety of liraglutide added to capped insulin treatment in subjects with type 1 diabetes: The ADJUNCT TWO randomized trial. Diabetes Care, 39(10), 1693–1701. https://doi.org/10.2337/dc16-0690
Mathieu, C., Zinman, B., Hemmingsson, J. U., Woo, V., Colman, P., Christiansen, E., Linder, M., Bode, B., & ADJUNCT ONE Investigators. (2016). Efficacy and safety of liraglutide added to insulin treatment in type 1 diabetes: The ADJUNCT ONE treat-to-target randomized trial. Diabetes Care, 39(10), 1702–1710. https://doi.org/10.2337/dc16-0691
Kuhadiya, N. D., Dhindsa, S., Ghanim, H., Mehta, A., Makdissi, A., Batra, M., Sandhu, S., Hejna, J., Green, K., Bellini, N., Yang, M., Chaudhuri, A., & Dandona, P. (2016). Addition of liraglutide to insulin in patients with type 1 diabetes: A randomized placebo-controlled clinical trial of 12 weeks. Diabetes Care, 39(6), 1027–1035. https://doi.org/10.2337/dc15-1136
Dejgaard, T. F., Frandsen, C. S., Hansen, T. S., Almdal, T., Urhammer, S., Pedersen-Bjergaard, U., Jensen, T., Jensen, A. K., Holst, J. J., Tarnow, L., Knop, F. K., Madsbad, S., & Andersen, H. U. (2016). Efficacy and safety of liraglutide for overweight adult patients with type 1 diabetes and insufficient glycaemic control (Lira-1): a randomised, double-blind, placebo-controlled trial. The Lancet Diabetes & Endocrinology, 4(3), 221–232. https://doi.org/10.1016/S2213-8587(15)00436-2
Frandsen, C. S., Dejgaard, T. F., Holst, J. J., Andersen, H. U., Thorsteinsson, B., & Madsbad, S. (2015). Twelve-week treatment with liraglutide as add-on to insulin in normal-weight patients with poorly controlled type 1 diabetes: A randomized, placebo-controlled, double-blind parallel study. Diabetes Care, 38(12), 2250–2257. https://doi.org/10.2337/dc15-1037
Ghanim, H., Batra, M., Green, K., Abuaysheh, S., Hejna, J., Makdissi, A., Borowski, R., Kuhadiya, N. D., Chaudhuri, A., & Dandona, P. (2020). Liraglutide treatment in overweight and obese patients with type 1 diabetes: A 26-week randomized controlled trial; mechanisms of weight loss. Diabetes, Obesity and Metabolism, 22(10), 1742–1752. https://doi.org/10.1111/dom.14090
Kielgast, U., Krarup, T., Holst, J. J., & Madsbad, S. (2011). Four weeks of treatment with liraglutide reduces insulin dose without loss of glycemic control in type 1 diabetic patients with and without residual beta-cell function. Diabetes Care, 34(7), 1463–1468. https://doi.org/10.2337/dc11-0096
Dejgaard, T. F., Frandsen, C. S., Kielgast, U., Størling, J., Overgaard, A. J., Svane, M. S., Olsen, M. H., Thorsteinsson, B., Andersen, H. U., Krarup, T., Holst, J. J., & Madsbad, S. (2024). Liraglutide enhances insulin secretion and prolongs the remission period in adults with newly diagnosed type 1 diabetes (the NewLira study): A randomized, double-blind, placebo-controlled trial. Diabetes, Obesity and Metabolism, 26(11), 4905–4915. https://doi.org/10.1111/dom.15889
Pasqua, M.-R., Tsoukas, M. A., Kobayati, A., Aboznadah, W., Jafar, A., & Haidar, A. (2025). Subcutaneous weekly semaglutide with automated insulin delivery in type 1 diabetes: A double-blind, randomized, crossover trial. Nature Medicine, 31(4), 1239–1245. https://doi.org/10.1038/s41591-024-03463-z
Shah, V. N., Akturk, H. K., Kruger, D., Ahmann, A., Bhargava, A., Bakoyannis, G., Pyle, L., & Snell-Bergeon, J. K. (2025). Semaglutide in adults with type 1 diabetes and obesity. NEJM Evidence, 4(8), EVIDoa2500173. https://doi.org/10.1056/EVIDoa2500173
Views:
79
Downloads:
29
Copyright (c) 2025 Małgorzata Stopyra, Krzysztof Feret, Agata Andrzejczyk, Natalia Nafalska, Aleksandra Tomaszewska, Joanna Gadzinowska, Maciej Kokoszka, Michalina Chodór, Gabriela Szpila, Angelika Lewandowska

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.