MULTIPLE APPLICATIONS OF COLD ATMOSPHERIC PLASMA IN MEDICINE
Abstract
Background: Cold atmospheric plasma (CAP) is a partially ionized gas produced at near-room temperature and atmospheric pressure. It has gained significant interest in recent years due to its diverse biomedical applications, especially in oncology, dermatology, and wound healing. The therapeutic potential of CAP is primarily based on the generation of reactive oxygen and nitrogen species (RONS), as well as minor ultraviolet radiation.
Aim: The aim of this review is to summarize current knowledge from 2020 to 2025 regarding the biological effects and clinical applications of CAP, with particular emphasis on its role in cancer treatment, dermatological conditions, and wound management.
Material and methods: A literature review was conducted using the PubMed database, focusing on articles published in English between 2016 and 2025 with a particular focus on recent evidence from 2021 to 2025 that address the medical use of CAP. Studies without full text, control groups, or of poor methodological quality were excluded.
Results: In oncology, CAP demonstrates selective cytotoxic effects against tumor cells by disrupting cellular signaling, inducing oxidative stress, and modulating the tumor microenvironment. Studies report efficacy in cancers such as melanoma, breast cancer, and head and neck tumors. In dermatology, CAP exhibits antimicrobial activity, enhances skin barrier repair, modulates immune responses, and improves transdermal drug delivery. In wound care, CAP supports tissue regeneration by promoting cell proliferation, angiogenesis, and the breakdown of microbial biofilms.
Conclusions: CAP is a promising tool in modern medicine with broad therapeutic potential. Despite encouraging results, further research is necessary to standardize treatment protocols, ensure long-term safety, and optimize plasma devices for clinical use.
References
Wang, Y., Mang, X., Li, D., Wang, Z., Chen, Y., Cai, Z., & Tan, F. (2022). Cold atmospheric plasma sensitizes head and neck cancer to chemotherapy and immune checkpoint blockade therapy. Frontiers in Oncology, 12, 823999. https://doi.org/10.3389/fonc.2022.823999
Khalaf, A. T., Abdalla, A. N., Ren, K., & Liu, X. (2024). Cold atmospheric plasma (CAP): A revolutionary approach in dermatology and skincare. Clinical Plasma Medicine, 30, 101430. https://doi.org/10.1016/j.cpmed.2023.101430
Yan, D., Sherman, J. H., & Keidar, M. (2017). Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget, 8, 15977–15995. https://doi.org/10.18632/oncotarget.13304
Dai, X., Bazaka, K., Thompson, E. W., & Ostrikov, K. (2023). Cold atmospheric plasma: A promising controller of cancer cell states. Cancers (Basel), 15(7), 1904. https://doi.org/10.3390/cancers15071904
Wang, Y., Mang, X., Li, D., Chen, Y., Cai, Z., & Tan, F. (2023). Piezoelectric cold atmospheric plasma induces apoptosis and autophagy in human hepatocellular carcinoma cells through blocking glycolysis and AKT/mTOR/HIF-1α pathway. Journal of Advanced Research, 48, 133-144. https://doi.org/10.1016/j.jare.2023.03.005
Cao, X., Fang, T., Chen, M., Ning, T., Li, J., Siegel, P. M., Park, M., Chen, Z., & Chen, G. (2023). Trehalose enhanced cold atmospheric plasma-mediated cancer treatment. Journal of Controlled Release, 354, 634-644. https://doi.org/10.1016/j.jconrel.2023.04.023
Braný, D., Dvorská, D., Strnádel, J., Matáková, T., Halašová, E., & Škovierová, H. (2021). Effect of cold atmospheric plasma on epigenetic changes, DNA damage, and possibilities for its use in synergistic cancer therapy. International Journal of Molecular Sciences, 22, 12252. https://doi.org/10.3390/ijms222212252
Semmler, M. L., Bekeschus, S., Schäfer, M., et al. (2020). Molecular mechanisms of the efficacy of cold atmospheric pressure plasma (CAP) in cancer treatment. Cancers (Basel), 12, 269. https://doi.org/10.3390/cancers12020269
Gay-Mimbrera, J., Garcia, M. C., Isla-Tejera, B., Rodero-Serrano, A., Garcia-Nieto, A. V., & Ruano, J. (2016). Clinical and biological principles of cold atmospheric plasma application in skin cancer. Advances in Therapy, 33(6), 894–909. https://doi.org/10.1007/s12325-016-0338-1
Dai, X., Bazaka, K., Richard, D. J., Thompson, E. R. W., & Ostrikov, K. K. (2018). The emerging role of gas plasma in oncotherapy. Trends in Biotechnology, 36(11), 1183–1198. https://doi.org/10.1016/j.tibtech.2018.06.010
Hasse, S., Seebauer, C., Wende, K., Schmidt, A., Metelmann, H. R., von Woedtke, T., & Bekeschus, S. (2019). Cold argon plasma as adjuvant tumour therapy on progressive head and neck cancer: a preclinical study. Applied Sciences, 9(10), 2100. https://doi.org/10.3390/app9102100
Zimmermann, T., Staebler, S., Taudte, R. V., Ünüvar, S., Grösch, S., Arndt, S., Karrer, S., Fromm, M. F., & Bosserhoff, A. K. (2021). Cold atmospheric plasma triggers apoptosis via the unfolded protein response in melanoma cells. Cell Death & Disease, 12(11), 1039. https://doi.org/10.1038/s41419-021-04253-2
Adams, C. J., Kopp, M. C., Larburu, N., Nowak, P. R., & Ali, M. M. U. (2019). Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1. Frontiers in Molecular Biosciences, 6, 11. https://doi.org/10.3389/fmolb.2019.00011
Bekeschus, S., Moritz, J., Helfrich, I., Boeckmann, L., Weltmann, K. D., Emmert, S., Metelmann, H. R., Stoffels, I., & von Woedtke, T. (2020). Ex vivo exposure of human melanoma tissue to cold physical plasma elicits apoptosis and modulates inflammation. Applied Sciences, 10(6), 2080. https://doi.org/10.3390/app10062080
Bray, F., Laversanne, M., Sung, H., et al. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 74, 229–263. https://doi.org/10.3322/caac.21834
Almeida-Ferreira, C., Rodrigues, F., Marto, C. M., Botelho, M. F., & Laranjo, M. (2025). Cold atmospheric plasma for breast cancer treatment: what next? Medical Gas Research, 15(1), 110–111. https://doi.org/10.4103/mgr.MEDGASRES-D-24-00043
Aggelopoulos, C. A., Christodoulou, A. M., Tachliabouri, M., Meropoulis, S., Christopoulou, M. E., Karalis, T. T., Chatzopoulos, A., & Skandalis, S. S. (2021). Cold atmospheric plasma attenuates breast cancer cell growth through regulation of cell microenvironment effectors. Cancers (Basel), 13(20), 5111. https://doi.org/10.3390/cancers13205111
Khalaf, A. T., Abdalla, A. N., Ren, K., & Liu, X. (2023). Cold atmospheric plasma (CAP): A revolutionary approach in dermatology and skincare. Journal of Cosmetic Dermatology, 22(5), 1803–1814. https://doi.org/10.1111/jocd.14875
Tan, F., Wang, Y., Zhang, S., Shui, R., & Chen, J. (2023). Plasma dermatology: Skin therapy using cold atmospheric plasma. Journal of Dermatological Science, 110(3), 150–160. https://doi.org/10.1016/j.jdermsci.2023.01.005
Bolgeo, T., Maconi, A., Gardalini, M., Gatti, D., Di Matteo, R., Lapidari, M., Longhitano, Y., Savioli, G., Piccioni, A., & Zanza, C. (2024). The role of cold atmospheric plasma in wound healing processes in critically ill patients. Journal of Wound Care, 33(6), 456–467. https://doi.org/10.12968/jowc.2024.33.6.456
Views:
2
Downloads:
0
Copyright (c) 2025 Aleksandra Przelaskowska, Jan Puliński, Karolina Wojdat-Krupa, Maksymilian Czarnota, Monika Rogowska, Klaudia Płudowska, Wiktoria Boral, Marek Dróżdż, Karol Sikora, Alicja Czyszczoń

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

