RECOVERY STRATEGIES IN SPORT - A REVIEW OF CURRENT RESEARCH
Abstract
Introduction and Purpose: Effective recovery is critical for optimizing athletic performance and preventing injury. This review aims to synthesize current research on recovery strategies in sport by examining the physiological, neurological, and psychological mechanisms underlying fatigue and regeneration.
Key findings: The multifactorial nature of fatigue is discussed, including metabolic, central, and peripheral contributors, as well as individual differences related to age and sex. Cellular and systemic regenerative processes are analyzed to understand recovery dynamics. Popular recovery methods such as sports massage, cryotherapy, balneotherapy, and hydrotherapy are evaluated alongside nutritional interventions including protein, carbohydrates, creatine, BCAAs, caffeine, and vitamin D supplementation. The role of sleep and neuropsychological recovery techniques, including breathing exercises, is emphasized. Emerging trends such as active recovery protocols and the application of wearable technology—particularly heart rate variability (HRV) monitoring—are reviewed for their potential to personalize and enhance recovery.
Conclusions: A holistic, individualized approach to recovery that integrates physiological, nutritional, and technological strategies is essential for maximizing athletic outcomes. Despite advances, significant gaps remain in understanding the optimal combination and timing of recovery interventions, highlighting the need for further rigorous research.
References
Kellmann M, Bertollo M, Bosquet L, et al. Recovery and Performance in Sport: Consensus Statement. Int J Sports Physiol Perform. 2018;13(2):240-245. doi:10.1123/ijspp.2017-0759
Dupuy O, Douzi W, Theurot D, Bosquet L, Dugué B. An Evidence-Based Approach for Choosing Post-exercise Recovery Techniques to Reduce Markers of Muscle Damage, Soreness, Fatigue, and Inflammation: A Systematic Review With Meta-Analysis. Front Physiol. 2018;9:403. doi:10.3389/fphys.2018.00403
Boska MD, Moussavi RS, Carson PJ, Weiner MW, Miller RG. The metabolic basis of recovery after fatiguing exercise of human muscle. Neurology. 1990;40(2):240-244. doi:10.1212/wnl.40.2.240
Roussel M, Mattei JP, Le Fur Y, Ghattas B, Cozzone PJ, Bendahan D. Metabolic determinants of the onset of acidosis in exercising human muscle: a 31P-MRS study. Journal of Applied Physiology. 2003;94(3):1145-1152. doi:10.1152/japplphysiol.01024.2000
Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88(1):287-332. doi:10.1152/physrev.00015.2007
Jf TA, J JM, A RZ, Vj CS. Central and Peripheral Fatigue in Physical Exercise Explained: A Narrative Review. International journal of environmental research and public health. 2022;19(7). doi:10.3390/ijerph19073909
Pageaux B. Perception of effort in Exercise Science: Definition, measurement and perspectives. Eur J Sport Sci. 2016;16(8):885-894. doi:10.1080/17461391.2016.1188992
Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 2001;81(4):1725-1789. doi:10.1152/physrev.2001.81.4.1725
Meeusen R, Watson P, Hasegawa H, Roelands B, Piacentini MF. Central fatigue: the serotonin hypothesis and beyond. Sports Med. 2006;36(10):881-909. doi:10.2165/00007256-200636100-00006
Chaouloff F, Laude D, Elghozi JL. PHysical exercise: evidence for differential consequences of tryptophan on 5-HT synthesis and metabolism in central serotonergic cell bodies and terminals. J Neural Transm. 1989;78(2):121-130. doi:10.1007/BF01252498
Davis JM, Bailey SP. Possible mechanisms of central nervous system fatigue during exercise. Med Sci Sports Exerc. 1997;29(1):45-57. doi:10.1097/00005768-199701000-00008
Roelands B, de Koning J, Foster C, Hettinga F, Meeusen R. Neurophysiological determinants of theoretical concepts and mechanisms involved in pacing. Sports Med. 2013;43(5):301-311. doi:10.1007/s40279-013-0030-4
Meeusen R, Watson P. Amino acids and the brain: do they play a role in “central fatigue”? Int J Sport Nutr Exerc Metab. 2007;17 Suppl:S37-46. doi:10.1123/ijsnem.17.s1.s37 14. Marcora SM, Staiano W, Manning V. Mental fatigue impairs physical performance in humans. J Appl Physiol (1985). 2009;106(3):857-864. doi:10.1152/japplphysiol.91324.2008
Habay J, Uylenbroeck R, Van Droogenbroeck R, et al. Interindividual Variability in Mental Fatigue-Related Impairments in Endurance Performance: A Systematic Review and Multiple Meta-regression. Sports Med Open. 2023;9(1):14. doi:10.1186/s40798-023-00559-7
Hunter SK. Performance Fatigability: Mechanisms and Task Specificity. Cold Spring Harb Perspect Med. 2018;8(7):a029728. doi:10.1101/cshperspect.a029728
Cè E, Longo S, Limonta E, Coratella G, Rampichini S, Esposito F. Peripheral fatigue: new mechanistic insights from recent technologies. European Journal of Applied Physiology. 2020;120(1):17-39. doi:10.1007/s00421-019-04264-w
Westerblad H, Bruton JD, Katz A. Skeletal muscle: energy metabolism, fiber types, fatigue and adaptability. Exp Cell Res. 2010;316(18):3093-3099. doi:10.1016/j.yexcr.2010.05.019
Allen DG, Westerblad H, Lee JA, Lännergren J. Role of Excitation-Contraction Coupling in Muscle Fatigue. Sports Medicine. 1992;13(2):116-126. doi:10.2165/00007256-199213020-00007
McNeil CJ, Allen MD, Olympico E, Shoemaker JK, Rice CL. Blood flow and muscle oxygenation during low, moderate, and maximal sustained isometric contractions. Am J Physiol Regul Integr Comp Physiol. 2015;309(5):R475-481. doi:10.1152/ajpregu.00387.2014
Enoka RM, Duchateau J. Muscle fatigue: what, why and how it influences muscle function. J Physiol. 2008;586(1):11-23. doi:10.1113/jphysiol.2007.139477
Pasquet B, Carpentier A, Duchateau J, Hainaut K. Muscle fatigue during concentric and eccentric contractions. Muscle Nerve. 2000;23(11):1727-1735. doi:10.1002/1097-4598(200011)23:11<1727::aid-mus9>3.0.co;2-y
Royer N, Nosaka K, Doguet V, Jubeau M. Neuromuscular responses to isometric, concentric and eccentric contractions of the knee extensors at the same torque-time integral. Eur J Appl Physiol. 2022;122(1):127-139. doi:10.1007/s00421-021-04817-y
Gaemelke T, Riemenschneider M, Dalgas U, et al. Comparison Between Isometric and Concentric Motor Fatigability in Persons With Multiple Sclerosis and Healthy Controls - exploring central and peripheral contributions of motor fatigability. Neurorehabil Neural Repair. 2021;35(7):644-653. doi:10.1177/15459683211017502
Clarkson PM, Hubal MJ. Exercise-induced muscle damage in humans. Am J Phys Med Rehabil. 2002;81(11 Suppl):S52-69. doi:10.1097/00002060-200211001-00007
Sakamoto A, Sinclair PJ. Muscle activations under varying lifting speeds and intensities during bench press. Eur J Appl Physiol. 2012;112(3):1015-1025. doi:10.1007/s00421-011-2059-0
Sakamoto A, Sinclair PJ. Effect of movement velocity on the relationship between training load and the number of repetitions of bench press. J Strength Cond Res.2006;20(3):523-527. doi:10.1519/16794.1
Vøllestad NK, Sejersted OM, Bahr R, Woods JJ, Bigland-Ritchie B. Motor drive and metabolic responses during repeated submaximal contractions in humans. J Appl Physiol (1985). 1988;64(4):1421-1427. doi:10.1152/jappl.1988.64.4.1421
Hunter SK. Sex differences in human fatigability: mechanisms and insight to physiological responses. Acta Physiol (Oxf). 2014;210(4):768-789. doi:10.1111/apha.12234 30. Russ DW, Kent-Braun JA. Sex differences in human skeletal muscle fatigue are eliminated under ischemic conditions. J Appl Physiol (1985). 2003;94(6):2414-2422. doi:10.1152/japplphysiol.01145.2002
Haizlip KM, Harrison BC, Leinwand LA. Sex-based differences in skeletal muscle kinetics and fiber-type composition. Physiology (Bethesda). 2015;30(1):30-39. doi:10.1152/physiol.00024.2014
Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16(10):626-638. doi:10.1038/nri.2016.90
Nuzzo JL. Sex differences in skeletal muscle fiber types: A meta-analysis. Clin Anat. 2024;37(1):81-91. doi:10.1002/ca.24091
Fu X, Wang H, Hu P. Stem cell activation in skeletal muscle regeneration. Cell Mol Life Sci. 2015;72(9):1663-1677. doi:10.1007/s00018-014-1819-5
Neel BA, Lin Y, Pessin JE. Skeletal Muscle Autophagy: A New Metabolic Regulator. Trends Endocrinol Metab. 2013;24(12):10.1016/j.tem.2013.09.004. doi:10.1016/j.tem.2013.09.004
Kim KM, Yoo GD, Heo W, et al. TAZ stimulates exercise-induced muscle satellite cell activation via Pard3-p38 MAPK-TAZ signalling axis. J Cachexia Sarcopenia Muscle. 2023;14(6):2733-2746. doi:10.1002/jcsm.13348
Andre AB, Rees KP, O’Connor S, et al. Single cell analysis reveals satellite cell heterogeneity for proinflammatory chemokine expression. Front Cell Dev Biol. 2023;11:1084068. doi:10.3389/fcell.2023.1084068
Cheng AJ, Jude B, Lanner JT. Intramuscular mechanisms of overtraining. Redox Biol. 2020;35:101480. doi:10.1016/j.redox.2020.101480
He C, Bassik MC, Moresi V, et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature. 2012;481(7382):511-515. doi:10.1038/nature10758
Aspetar Sports Medicine Journal - Recovery techniques for athletes. Accessed June 26, 2025. https://journal.aspetar.com/en/archive/volume-4-targeted-topic-post-exercise-recovery/recovery-techniques-for-athletes
Davis HL, Alabed S, Chico TJA. Effect of sports massage on performance and recovery: a systematic review and meta-analysis. BMJ Open Sport Exerc Med. 2020;6(1):e000614. doi:10.1136/bmjsem-2019-000614
Davis HL, Alabed S, Chico TJA. Effect of sports massage on performance and recovery: a systematic review and meta-analysis. BMJ Open Sport Exerc Med. 2020;6(1):e000614. doi:10.1136/bmjsem-2019-000614
Vieira Ramos G, Pinheiro CM, Messa SP, et al. Cryotherapy Reduces Inflammatory Response Without Altering Muscle Regeneration Process and Extracellular Matrix Remodeling of Rat Muscle. Sci Rep. 2016;6:18525. doi:10.1038/srep18525
Xiao F, Kabachkova AV, Jiao L, Zhao H, Kapilevich LV. Effects of cold water immersion after exercise on fatigue recovery and exercise performance--meta analysis. Front Physiol. 2023;14:1006512. doi:10.3389/fphys.2023.1006512
White G, Caterini JE. Cold water immersion mechanisms for recovery following exercise: cellular stress and inflammation require closer examination. J Physiol. 2017;595(3):631-632. doi:10.1113/JP273659
Dolan MG, Mychaskiw AM, Mendel FC. Cool-Water Immersion and High-Voltage Electric Stimulation Curb Edema Formation in Rats. J Athl Train. 2003;38(3):225-230.
Abaïdia AE, Lamblin J, Delecroix B, et al. Recovery From Exercise-Induced Muscle Damage: Cold-Water Immersion Versus Whole-Body Cryotherapy. Int J Sports Physiol Perform. 2017;12(3):402-409. doi:10.1123/ijspp.2016-0186
Garcia C, Karri J, Zacharias NA, Abd-Elsayed A. Use of Cryotherapy for Managing Chronic Pain: An Evidence-Based Narrative. Pain Ther. 2021;10(1):81-100. doi:10.1007/s40122-020-00225-w
Lv X, Wang J, Bao Y, et al. The effectiveness of balneotherapy and aquatic exercise on bone metabolism: A systematic review and meta-analysis. Complement Ther Clin Pract. 2021;44:101429. doi:10.1016/j.ctcp.2021.101429
Onat ŞŞ, Taşoğlu Ö, Güneri FD, Özişler Z, Safer VB, Özgirgin N. The effectiveness of balneotherapy in chronic low back pain. Clin Rheumatol. 2014;33(10):1509-1515. doi:10.1007/s10067-014-2545-y
Taglietti M, Facci LM, Trelha CS, et al. Effectiveness of aquatic exercises compared to patient-education on health status in individuals with knee osteoarthritis: a randomized controlled trial. Clin Rehabil. 2018;32(6):766-776. doi:10.1177/0269215517754240
Karagülle M, Karagülle MZ. Effectiveness of balneotherapy and spa therapy for the treatment of chronic low back pain: a review on latest evidence. Clin Rheumatol. 2015;34(2):207-214. doi:10.1007/s10067-014-2845-2
Cuesta-Vargas AI, Travé-Mesa A, Vera-Cabrera A, et al. Hydrotherapy as a recovery strategy after exercise: a pragmatic controlled trial. BMC Complement Altern Med. 2013;13:180. doi:10.1186/1472-6882-13-180
Al Haddad H, Laursen PB, Chollet D, Lemaitre F, Ahmaidi S, Buchheit M. Effect of cold or thermoneutral water immersion on post-exercise heart rate recovery and heart rate variability indices. Auton Neurosci. 2010;156(1-2):111-116. doi:10.1016/j.autneu.2010.03.017
de Oliveira Ottone V, de Castro Magalhães F, de Paula F, et al. The effect of different water immersion temperatures on post-exercise parasympathetic reactivation. PLoS One. 2014;9(12):e113730. doi:10.1371/journal.pone.0113730
Davies RW, Carson BP, Jakeman PM. The Effect of Whey Protein Supplementation on the Temporal Recovery of Muscle Function Following Resistance Training: A Systematic Review and Meta-Analysis. Nutrients. 2018;10(2):221. doi:10.3390/nu10020221
Quintero KJ, Resende A de S, Leite GSF, Lancha Junior AH. An overview of nutritional strategies for recovery process in sports-related muscle injuries. Nutrire. 2018;43(1):27. doi:10.1186/s41110-018-0084-z
Beck KL, Thomson JS, Swift RJ, von Hurst PR. Role of nutrition in performance enhancement and postexercise recovery. Open Access J Sports Med. 2015;6:259-267. doi:10.2147/OAJSM.S33605
Esmarck B, Andersen JL, Olsen S, Richter EA, Mizuno M, Kjær M. Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. J Physiol. 2001;535(Pt 1):301-311. doi:10.1111/j.1469-7793.2001.00301.x
Farnfield MM, Carey KA, Gran P, Trenerry MK, Cameron-Smith D. Whey Protein Ingestion Activates mTOR-dependent Signalling after Resistance Exercise in Young Men: A Double-Blinded Randomized Controlled Trial. Nutrients. 2009;1(2):263-275. doi:10.3390/nu1020263
Northeast B, Clifford T. The Effect of Creatine Supplementation on Markers of Exercise-Induced Muscle Damage: A Systematic Review and Meta-Analysis of Human Intervention Trials. Int J Sport Nutr Exerc Metab. 2021;31(3):276-291. doi:10.1123/ijsnem.2020-0282
Atalay E, Kaçoğlu C, Şekir U. Effect of Caffeine Ingestion Before or After Muscle Damage on Delayed Onset Muscle Soreness: A Meta-Analysis of Randomized Controlled Trials. Montenegrin Journal of Sports Science and Medicine. 14(1):51-59.
Chen HY, Chen YC, Tung K, Chao HH, Wang HS. Effects of caffeine and sex on muscle performance and delayed-onset muscle soreness after exercise-induced muscle damage: a double-blind randomized trial. Journal of Applied Physiology. 2019;127(3):798-805. doi:10.1152/japplphysiol.01108.2018
Muljadi JA, Kaewphongsri P, Chaijenkij K, Kongtharvonskul J. Effect of caffeine on delayed-onset muscle soreness: a meta-analysis of RCT. Bulletin of the National Research Centre. 2021;45(1):197. doi:10.1186/s42269-021-00660-5
Liu MC, Weng PW, Chen SC, et al. Immunologic, Anti-Inflammatory, and Anti-Muscle Damage Profile of Supplemented Vitamin D3 in Healthy Adults on Strenuous Endurance Exercise. Biology (Basel). 2023;12(5):657. doi:10.3390/biology12050657
Yang CT, Weng PW, Chien LH, Kumar S, Yang MT. Effects of vitamin D3 supplementation on oxidative stress and antioxidant enzyme after strenuous endurance exercise in healthy young men: a double-blind, placebo-controlled trial. Biol Sport. 2025;42(1):137-144. doi:10.5114/biolsport.2025.139087
Daniel Vasile PR, Patricia ML, Marta MS, Laura E. Evaluation of curcumin intake in reducing exercise-induced muscle damage in athletes: a systematic review. J Int Soc Sports Nutr. 2024;21(1):2434217. doi:10.1080/15502783.2024.2434217
Yang DF, Shen YL, Wu C, et al. Sleep deprivation reduces the recovery of muscle injury induced by high-intensity exercise in a mouse model. Life Sci. 2019;235:116835. doi:10.1016/j.lfs.2019.116835
Watson AM. Sleep and Athletic Performance. Curr Sports Med Rep.2017;16(6):413-418. doi:10.1249/JSR.0000000000000418
Sleep and athletic performance: the effects of sleep loss on exercise performance, and physiological and cognitive responses to exercise - PubMed. Accessed June 26, 2025. https://pubmed.ncbi.nlm.nih.gov/25315456/
Dáttilo M, Antunes HKM, Galbes NMN, et al. Effects of Sleep Deprivation on Acute Skeletal Muscle Recovery after Exercise. Med Sci Sports Exerc. 2020;52(2):507-514. doi:10.1249/MSS.0000000000002137
Gutmann B, Zimmer P, Hülsdünker T, et al. The effects of exercise intensity and post-exercise recovery time on cortical activation as revealed by EEG alpha peak frequency. Neurosci Lett. 2018;668:159-163. doi:10.1016/j.neulet.2018.01.007
Martarelli D, Cocchioni M, Scuri S, Pompei P. Diaphragmatic Breathing Reduces Exercise-Induced Oxidative Stress. Evid Based Complement Alternat Med. 2011;2011:932430. doi:10.1093/ecam/nep169
Balban MY, Neri E, Kogon MM, et al. Brief structured respiration practices enhance mood and reduce physiological arousal. Cell Rep Med. 2023;4(1):100895. doi:10.1016/j.xcrm.2022.100895
Balban MY, Neri E, Kogon MM, et al. Brief structured respiration practices enhance mood and reduce physiological arousal. Cell Rep Med. 2023;4(1):100895. doi:10.1016/j.xcrm.2022.100895
Nalbandian HM, Radak Z, Takeda M. Active Recovery between Interval Bouts Reduces Blood Lactate While Improving Subsequent Exercise Performance in Trained Men. Sports (Basel). 2017;5(2):40. doi:10.3390/sports5020040
Afonso J, Clemente FM, Nakamura FY, et al. The Effectiveness of Post-exercise Stretching in Short-Term and Delayed Recovery of Strength, Range of Motion and Delayed Onset Muscle Soreness: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Physiol. 2021;12:677581. doi:10.3389/fphys.2021.677581
Plews DJ, Laursen PB, Kilding AE, Buchheit M. Heart rate variability in elite triathletes, is variation in variability the key to effective training? A case comparison. Eur J Appl Physiol. 2012;112(11):3729-3741. doi:10.1007/s00421-012-2354-4
Haghi M, Danyali S, Ayasseh S, Wang J, Aazami R, Deserno TM. Wearable Devices in Health Monitoring from the Environmental towards Multiple Domains: A Survey. Sensors. 2021;21(6):2130. doi:10.3390/s21062130
Paradis-Deschênes P, Lapointe J, Joanisse DR, Billaut F. Similar Recovery of Maximal Cycling Performance after Ischemic Preconditioning, Neuromuscular Electrical Stimulation or Active Recovery in Endurance Athletes. J Sports Sci Med. 2020;19(4):761-771.
Poppendieck W, Faude O, Wegmann M, Meyer T. Cooling and performance recovery of trained athletes: a meta-analytical review. Int J Sports Physiol Perform. 2013;8(3):227-242. doi:10.1123/ijspp.8.3.227
Li S, Kempe M, Brink M, Lemmink K. Effectiveness of Recovery Strategies After Training and Competition in Endurance Athletes: An Umbrella Review. Sports Med - Open. 2024;10(1):55. doi:10.1186/s40798-024-00724-6
Halson SL. Monitoring Training Load to Understand Fatigue in Athletes. Sports Med. 2014;44(Suppl 2):139-147. doi:10.1007/s40279-014-0253-z
Gondin J, Guette M, Ballay Y, Martin A. Electromyostimulation training effects on neural drive and muscle architecture. Med Sci Sports Exerc. 2005;37(8):1291-1299. doi:10.1249/01.mss.0000175090.49048.41
Meeusen R, Duclos M, Foster C, et al. Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med Sci Sports Exerc. 2013;45(1):186-205. doi:10.1249/MSS.0b013e318279a10a
Zouhal H, Jayavel A, Parasuraman K, et al. Effects of Exercise Training on Anabolic and Catabolic Hormones with Advanced Age: A Systematic Review. Sports Med. 2022;52(6):1353-1368. doi:10.1007/s40279-021-01612-9
Enns DL, Tiidus PM. The influence of estrogen on skeletal muscle: sex matters. Sports Med. 2010;40(1):41-58. doi:10.2165/11319760-000000000-00000
Tiidus PM. Estrogen and gender effects on muscle damage, inflammation, and oxidative stress. Can J Appl Physiol. 2000;25(4):274-287. doi:10.1139/h00-022
Exercise, infection, and immunity - PubMed. Accessed June 26, 2025. https://pubmed.ncbi.nlm.nih.gov/7883395/
Millet GY, Lepers R. Alterations of neuromuscular function after prolonged running, cycling and skiing exercises. Sports Med. 2004;34(2):105-116. doi:10.2165/00007256-200434020-00004
Kellmann M. Preventing overtraining in athletes in high-intensity sports and stress/recovery monitoring. Scand J Med Sci Sports. 2010;20 Suppl 2:95-102. doi:10.1111/j.1600-0838.2010.01192.x
Keyser RE. Peripheral fatigue: high-energy phosphates and hydrogen ions. PM R. 2010;2(5):347-358. doi:10.1016/j.pmrj.2010.04.009
Kay D, St Clair Gibson A, Mitchell MJ, Lambert MI, Noakes TD. Different neuromuscular recruitment patterns during eccentric, concentric and isometric contractions. J Electromyogr Kinesiol. 2000;10(6):425-431. doi:10.1016/s1050-6411(00)00031-6
Views:
35
Downloads:
17
Copyright (c) 2025 Karolina Wojdat-Krupa, Weronika Ossowska, Maksymilian Czarnota, Monika Rogowska, Klaudia Płudowska, Julia Dolinkiewicz, Karol Sikora, Aleksandra Przelaskowska, Paulina Lewaśkiewicz

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.