BLUE LIGHT EXPOSURE AND RETINAL HEALTH: MYTHS, EVIDENCE, AND THE ROLE OF BLUE LIGHT-BLOCKING INTERVENTIONS

Keywords: Blue Light, Retina, Oxidative Stress, Sleep, Protective Devices, Screen Exposure

Abstract

Aims: With the widespread use of digital devices and LED-based lighting, exposure to artificial blue light has significantly increased in recent years. This has raised concerns about potential retinal damage, disruption of circadian rhythms, and digital eye strain. At the same time, the market for blue light-blocking interventions, such as specialty eyewear and screen filters, has expanded rapidly. The aims of this review is to assess current scientific evidence on the biological effects of blue light on retinal health, evaluate the effectiveness of blue light-blocking strategies, and clarify common misconceptions.

Methods: A narrative literature review was conducted using PubMed, Scopus, and Web of Science databases. Peer-reviewed articles published between 2010 and 2025 were included. The review focused on studies examining the retinal effects of blue light exposure, the pathophysiological mechanisms involved (including oxidative stress and phototoxicity), and clinical trials evaluating the use of blue light filters and digital ergonomics in reducing visual fatigue and sleep disruption.

Results: Although experimental models suggest that high-intensity blue light may contribute to retinal oxidative stress, current clinical evidence does not support a direct link between typical screen exposure and long-term retinal damage. Blue light-blocking glasses show limited efficacy in reducing eye strain or improving sleep in the general population. Misconceptions about blue light toxicity persist, often driven by commercial claims rather than scientific validation.

Conclusions: Blue light from screens poses minimal risk to retinal integrity under normal use conditions. Preventive strategies such as screen breaks, proper lighting, and digital ergonomics appear more effective than blue-blocking products. Health education efforts should focus on evidence-based practices rather than marketing-driven solutions.

References

Cougnard-Gregoire, A., Merle, B. M. J., Aslam, T., Seddon, J. M., Aknin, I., Klaver, C. C. W., Garhöfer, G., Layana, A. G., Minnella, A. M., Silva, R., & Delcourt, C. (2023). Blue light exposure: Ocular hazards and prevention—A narrative review. Ophthalmology and Therapy, 12(2), 755–788. https://doi.org/10.1007/s40123-023-00675-3

Ouyang, X., Yang, J., Hong, Z., Wu, Y., Xie, Y., & Wang, G. (2020). Mechanisms of blue light-induced eye hazard and protective measures: A review. Biomedicine & Pharmacotherapy, 130, 110577. https://doi.org/10.1016/j.biopha.2020.110577

Jaadane, I., Boulenguez, P., Chahory, S., Carré, S., Savoldelli, M., Jonet, L., Behar-Cohen, F., Martinsons, C., & Torriglia, A. (2015). Retinal damage induced by commercial light emitting diodes (LEDs). Free Radical Biology and Medicine, 84, 373–384. https://doi.org/10.1016/j.freeradbiomed.2015.03.034

Antemie, R. G., Samoilă, O. C., & Clichici, S. V. (2023). Blue light—Ocular and systemic damaging effects: A narrative review. International Journal of Molecular Sciences, 24(6), 5998. https://doi.org/10.3390/ijms24065998

Tao, J. X., Zhou, W. C., & Zhu, X. G. (2019). Mitochondria as potential targets and initiators of the blue light hazard to the retina. Oxidative Medicine and Cellular Longevity, 2019, 6435364. https://doi.org/10.1155/2019/6435364

Song, S. Y., Park, D. H., Lee, S. H., Lim, H. K., Park, J. W., Seo, J. W., & Cho, S. S. (2024). Protective effects of 7S,15R-dihydroxy-16S,17S-epoxy-docosapentaenoic acid (diHEP-DPA) against blue light-induced retinal damages in A2E-laden ARPE-19 cells. Antioxidants, 13(8), 982. https://doi.org/10.3390/antiox13080982

Wu, J., Seregard, S., & Algvere, P. V. (2006). Photochemical damage of the retina. Survey of Ophthalmology, 51(5), 461–481. https://doi.org/10.1016/j.survophthal.2006.06.009

Wahl, S., Engelhardt, M., Schaupp, P., Lappe, C., & Ivanov, I. V. (2019). The inner clock—Blue light sets the human rhythm. Journal of Biophotonics, 12(12), e201900102. https://doi.org/10.1002/jbio.201900102

Ostrin, L. A. (2019). Ocular and systemic melatonin and the influence of light exposure. Clinical and Experimental Optometry, 102(2), 99–108. https://doi.org/10.1111/cxo.12824

Silvani, M. I., Werder, R., & Perret, C. (2022). The influence of blue light on sleep, performance, and wellbeing in young adults: A systematic review. Frontiers in Physiology, 13, 943108. https://doi.org/10.3389/fphys.2022.943108

Koelbl, P. S., Hessling, M., Lingenfelder, C., & Kupferschmid, S. (2019). Higher risk of light-induced retinal damage due to increase of intraocular irradiance by endoillumination. Ophthalmology and Therapy, 8(1), 41–50. https://doi.org/10.1007/s40123-018-0157-3

Wu, J., Seregard, S., & Algvere, P. V. (2006). Photochemical damage of the retina. Survey of Ophthalmology, 51(5), 461–481. https://doi.org/10.1016/j.survophthal.2006.06.009

Song, S. Y., Park, D. H., Lee, S. H., et al. (2024). Protective effects of 7S,15R-dihydroxy-16S,17S-epoxy-docosapentaenoic acid (diHEP-DPA) against blue light-induced retinal damages in A2E-laden ARPE-19 cells. Antioxidants, 13(8), 982. https://doi.org/10.3390/antiox13080982

Fan, B., Zhang, C., Chi, J., et al. (2022). The molecular mechanism of retina light injury focusing on damage from short wavelength light. Oxidative Medicine and Cellular Longevity, 2022, 8482149. https://doi.org/10.1155/2022/8482149

Zhang, D., Zhu, H., Yu, X., et al. (2022). Blue light attenuates TGF-β2-induced epithelial-mesenchymal transition in human lens epithelial cells via autophagy impairment. BMC Ophthalmology, 22(1), 456. https://doi.org/10.1186/s12886-022-02691-6

Yan, Y., Wu, Y., Zhao, Y., et al. (2025). A review on eye diseases induced by blue light: Pathology, model, active ingredients and mechanisms. Frontiers in Pharmacology, 16, 1513406. https://doi.org/10.3389/fphar.2025.1513406

Algvere, P. V., Marshall, J., & Seregard, S. (2006). Age-related maculopathy and the impact of blue light hazard. Acta Ophthalmologica Scandinavica, 84(1), 4–15. https://doi.org/10.1111/j.1600-0420.2005.00627.x

Wellard, J., Lee, D., Valter, K., & Stone, J. (2005). Photoreceptors in the rat retina are specifically vulnerable to both hypoxia and hyperoxia. Visual Neuroscience, 22(4), 501–507. https://doi.org/10.1017/S0952523805224112

Wu, J., Seregard, S., & Algvere, P. V. (2006). Photochemical damage of the retina. Survey of Ophthalmology, 51(5), 461–481. https://doi.org/10.1016/j.survophthal.2006.06.009

Song, S. Y., Park, D. H., Lee, S. H., et al. (2024). Protective effects of 7S,15R-dihydroxy-16S,17S-epoxy-docosapentaenoic acid (diHEP-DPA) against blue light-induced retinal damages in A2E-laden ARPE-19 cells. Antioxidants, 13(8), 982. https://doi.org/10.3390/antiox13080982

Suárez-Barrio, C., Del Olmo-Aguado, S., García-Pérez, E., et al. (2020). Antioxidant role of PRGF on RPE cells after blue light insult as a therapy for neurodegenerative diseases. International Journal of Molecular Sciences, 21(3), 1021. https://doi.org/10.3390/ijms21031021

Habib, L., Abi Nassif, L., Abboud, M., Michael-Jubeli, R., Tfayli, A., & Lteif, R. (2025). Evaluating blue light impact on reconstructed human epidermis using laser speckle imaging. Journal of Biomedical Optics, 30(5), 056001. https://doi.org/10.1117/1.JBO.30.5.056001

Salceda, R. (2024). Light pollution and oxidative stress: Effects on retina and human health. Antioxidants, 13(3), 362. https://doi.org/10.3390/antiox13030362

Kur, J., Newman, E. A., & Chan-Ling, T. (2012). Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Progress in Retinal and Eye Research, 31(5), 377–406. https://doi.org/10.1016/j.preteyeres.2012.04.004

Klein, R., Klein, B. E., Knudtson, M. D., et al. (2007). Fifteen-year cumulative incidence of age-related macular degeneration: The Beaver Dam Eye Study. Ophthalmology, 114(2), 253–262. https://doi.org/10.1016/j.ophtha.2006.10.040

Algvere, P. V., Marshall, J., & Seregard, S. (2006). Age-related maculopathy and the impact of blue light hazard. Acta Ophthalmologica Scandinavica, 84(1), 4–15. https://doi.org/10.1111/j.1600-0420.2005.00627.x

Katz, B. J., & Digre, K. B. (2016). Diagnosis, pathophysiology, and treatment of photophobia. Survey of Ophthalmology, 61(4), 466–477. https://doi.org/10.1016/j.survophthal.2016.02.001

Silvani, M. I., Werder, R., & Perret, C. (2022). The influence of blue light on sleep, performance, and wellbeing in young adults: A systematic review. Frontiers in Physiology, 13, 943108. https://doi.org/10.3389/fphys.2022.943108

Ostrin, L. A. (2019). Ocular and systemic melatonin and the influence of light exposure. Clinical and Experimental Optometry, 102(2), 99–108. https://doi.org/10.1111/cxo.12824

Do, M. T. H., & Yau, K. W. (2010). Intrinsically photosensitive retinal ganglion cells. Physiological Reviews, 90(4), 1547–1582. https://doi.org/10.1152/physrev.00013.2010

Wahl, S., Engelhardt, M., Schaupp, P., Lappe, C., & Ivanov, I. V. (2019). The inner clock—Blue light sets the human rhythm. Journal of Biophotonics, 12(12), e201900102. https://doi.org/10.1002/jbio.201900102

Ostrin, L. A. (2019). Ocular and systemic melatonin and the influence of light exposure. Clinical and Experimental Optometry, 102(2), 99–108. https://doi.org/10.1111/cxo.12824

Silvani, M. I., Werder, R., & Perret, C. (2022). The influence of blue light on sleep, performance, and wellbeing in young adults: A systematic review. Frontiers in Physiology, 13, 943108. https://doi.org/10.3389/fphys.2022.943108

Herbst, K., Sander, B., Lund-Andersen, H., et al. (2012). Intrinsically photosensitive retinal ganglion cell function in relation to age: A pupillometric study in humans with special reference to the age-related optic properties of the lens. BMC Ophthalmology, 12(4), 12–4. https://doi.org/10.1186/1471-2415-12-4

Figueiro, M. G., Bierman, A., & Rea, M. S. (2008). Retinal mechanisms and physiological responses to circadian light exposure. Chronobiology International, 25(5), 765–782. https://doi.org/10.1080/07420520802387777

Ostrin, L. A. (2019). Ocular and systemic melatonin and the influence of light exposure. Clinical and Experimental Optometry, 102(2), 99–108. https://doi.org/10.1111/cxo.12824

Nagare, R. M., Plitnick, B., & Figueiro, M. G. (2019). Effect of evening light exposure on melatonin and alertness: A systematic review. Chronobiology International, 36(4), 480–493. https://doi.org/10.1080/07420528.2019.1574018

Mainster, M. A., & Turner, P. L. (2010). Blue light filtering intraocular lenses: Filtering facts from fiction. Ophthalmology, 117(7), 1436–1437. https://doi.org/10.1016/j.ophtha.2010.01.042

Sheppard, A. L., & Wolffsohn, J. S. (2018). Digital eye strain: Prevalence, measurement, and amelioration. BMJ Open Ophthalmology, 3(1), e000146. https://doi.org/10.1136/bmjophth-2018-000146

Rosenfield, M. (2011). Computer vision syndrome: A review of ocular causes and potential treatments. Ophthalmic and Physiological Optics, 31(5), 502–515. https://doi.org/10.1111/j.1475-1313.2011.00834.x

Behar-Cohen, F., Martinsons, C., Vienot, F., et al. (2011). Light-emitting diodes (LED) for domestic lighting: Any risks for the eye? Progress in Retinal and Eye Research, 30(4), 239–257. https://doi.org/10.1016/j.preteyeres.2011.04.002

Glickman, G. (2021). Circadian rhythms and sleep in children: The impact of evening light exposure. Pediatric Clinics of North America, 68(3), 709–726. https://doi.org/10.1016/j.pcl.2021.02.007

Twenge, J. M., Hisler, G., & Krizan, Z. (2019). Associations between screen time and sleep duration are primarily driven by portable electronic devices: Evidence from a U.S. national study of children and adolescents. Sleep Health, 5(3), 280–285. https://doi.org/10.1016/j.sleh.2019.01.009

Hale, L., & Guan, S. (2015). Screen time and sleep among school-aged children and adolescents: A systematic literature review. Sleep Health, 1(4), 302–310. https://doi.org/10.1016/j.sleh.2015.08.007

LeBourgeois, M. K., Hale, L., Chang, A. M., et al. (2017). Digital media and sleep in childhood and adolescence. Pediatrics, 140(Suppl 2), S92–S96. https://doi.org/10.1542/peds.2016-1758J

Crowley, S. J., Acebo, C., & Carskadon, M. A. (2007). Sleep, circadian rhythms, and delayed phase in adolescence. Sleep Medicine, 8(6), 602–612. https://doi.org/10.1016/j.sleep.2006.12.002

Van der Lely, S., Frey, S., Garbazza, C., et al. (2015). Blue blocker glasses as a countermeasure for alerting effects of evening light-emitting diode screen exposure in male teenagers. Journal of Adolescent Health, 56(1), 113–119. https://doi.org/10.1016/j.jadohealth.2014.08.002

Cheung, C. H. M., Bedford, R., Saez De Urabain, I. R., et al. (2017). Daily touchscreen use in infants and toddlers is associated with reduced sleep and delayed sleep onset. Scientific Reports, 7, 46104. https://doi.org/10.1038/srep46104

American Academy of Pediatrics. (2016). Media and young minds. Pediatrics, 138(5), e20162591. https://doi.org/10.1542/peds.2016-2591

Hale, L., Troxel, W., & Buysse, D. J. (2020). Sleep health: An opportunity for public health to address health equity. Annual Review of Public Health, 41, 81–99. https://doi.org/10.1146/annurev-publhealth-040119-094412

Wichmann, A. F., & Sherry, D. M. (2021). Role of melanopsin and non-image forming photoreception in retinal physiology. Experimental Eye Research, 202, 108340. https://doi.org/10.1016/j.exer.2020.108340

Heath, M., Sutherland, C., & Bartel, K. (2021). Sleep and circadian health in a technology-rich world: The role of blue light. Clocks & Sleep, 3(2), 217–231. https://doi.org/10.3390/clockssleep3020016

Spitschan, M., & Aguirre, G. K. (2019). Measuring melanopic irradiance with iOS and Android devices. Lighting Research & Technology, 51(5), 730–736. https://doi.org/10.1177/1477153519830939

Lawrenson, J. G., Hull, C. C., & Downie, L. E. (2019). The effect of blue-light blocking spectacle lenses on visual performance, macular health and the sleep-wake cycle: A systematic review. Ophthalmic and Physiological Optics, 37(6), 644–654. https://doi.org/10.1111/opo.12406

Hadi, J., Wu, S., & Brightwell, G. (2020). Antimicrobial blue light versus pathogenic bacteria: Mechanism, application in the food industry, hurdle technologies and potential resistance. Foods, 9(12), 1895. https://doi.org/10.3390/foods9121895

Leung, T. W., Li, R. W., & Kee, C. S. (2017). Blue-light filtering spectacle lenses: Optical and clinical performances. PLOS ONE, 12(1), e0169114. https://doi.org/10.1371/journal.pone.0169114

Chang, A. M., Aeschbach, D., Duffy, J. F., & Czeisler, C. A. (2015). Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proceedings of the National Academy of Sciences of the United States of America, 112(4), 1232–1237. https://doi.org/10.1073/pnas.1418490112

O’Hagan, J. B., Khazova, M., & Price, L. L. (2016). Low-energy light bulbs, computers, tablets and the blue light hazard. Eye, 30(2), 230–233. https://doi.org/10.1038/eye.2015.261

Published
2025-12-21
Citations
How to Cite
Weronika Ossowska, Karolina Wojdat-Krupa, Wiktoria Ösztreicher, Paulina Lewaśkiewicz, Karol Sikora, & Filip Lachowski. (2025). BLUE LIGHT EXPOSURE AND RETINAL HEALTH: MYTHS, EVIDENCE, AND THE ROLE OF BLUE LIGHT-BLOCKING INTERVENTIONS. International Journal of Innovative Technologies in Social Science, (4(48). https://doi.org/10.31435/ijitss.4(48).2025.4332

Most read articles by the same author(s)