THE ROLE OF CREATINE IN NEUROLOGICAL DISORDERS: A LITERATURE REVIEW

Keywords: Creatine, Neuroprotection, Brain Energy Metabolism, Neurodegenerative Diseases, Parkinson’s Disease, Alzheimer’s Disease, Huntington’s Disease, Amyotrophic Lateral Sclerosis, Depression, Traumatic Brain Injury

Abstract

Creatine, widely known as a performance-enhancing supplement for athletes and bodybuilders is increasingly recognized for its potential neuroprotective properties. Beyond its well-established role in energy metabolism and muscle physiology, creatine appears to influence brain function by supporting ATP homeostasis, reducing oxidative stress, and stabilizing neuronal membranes. Recent studies have suggested that creatine supplementation may benefit individuals with neurodegenerative disorders such as Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease. Additionally, preliminary findings indicate a potential role for creatine in mitigating the effects of acute brain injuries and mood disorders, including major depressive disorder. Despite promising experimental data, the clinical efficacy of creatine in neurological settings remains under investigation, with inconsistent results across human trials. This review aims to summarize current knowledge on the neuroprotective effects of creatine and critically assess the quality of available evidence.

References

Kreider, R. B., Jäger, R., & Purpura, M. (2022). Bioavailability, efficacy, safety, and regulatory status of creatine and related compounds: A critical review. Nutrients, 14(5), 1035. https://doi.org/10.3390/nu14051035

Kreider, R. B., & Stout, J. R. (2021). Creatine in health and disease. Nutrients, 13(2), 447. https://doi.org/10.3390/nu13020447

Kreider, R., & Jung, Y. (2011). Creatine supplementation in exercise, sport, and medicine. Journal of Exercise Nutrition and Biochemistry, 15(2), 53–69. https://doi.org/10.5717/jenb.2011.15.2.53

Hultman, E., Söderlund, K., Timmons, J. A., Cederblad, G., & Greenhaff, P. L. (1996). Muscle creatine loading in men. Journal of Applied Physiology, 81(1), 232–237. https://doi.org/10.1152/jappl.1996.81.1.232

Wyss, M., & Kaddurah-Daouk, R. (2000). Creatine and creatinine metabolism. Physiological Reviews, 80(3), 1107–1213. https://doi.org/10.1152/physrev.2000.80.3.1107

Cunha, M. P., Martín-de-Saavedra, M. D., Romero, A., Egea, J., Ludka, F. K., Tasca, C. I., Farina, M., Rodrigues, A. L., & López, M. G. (2014). Both creatine and its product phosphocreatine reduce oxidative stress and afford neuroprotection in an in vitro Parkinson’s model. ASN Neuro, 6(6), 1759091414554945. https://doi.org/10.1177/1759091414554945

Genius, J., Geiger, J., Bender, A., Möller, H. J., Klopstock, T., & Rujescu, D. (2012). Creatine protects against excitotoxicity in an in vitro model of neurodegeneration. PLoS ONE, 7(2), e30554. https://doi.org/10.1371/journal.pone.0030554

Benton, D., & Donohoe, R. (2011). The influence of creatine supplementation on the cognitive functioning of vegetarians and omnivores. British Journal of Nutrition, 105(7), 1100–1105. https://doi.org/10.1017/S0007114510004733

McMorris, T., Mielcarz, G., Harris, R. C., Swain, J. P., & Howard, A. (2007). Creatine supplementation and cognitive performance in elderly individuals. Aging, Neuropsychology, and Cognition, 14(5), 517–528. https://doi.org/10.1080/13825580600788100

Rawson, E. S., Lieberman, H. R., Walsh, T. M., Zuber, S. M., Harhart, J. M., & Matthews, T. C. (2008). Creatine supplementation does not improve cognitive function in young adults. Physiology & Behavior, 95(1–2), 130–134. https://doi.org/10.1016/j.physbeh.2008.05.009

Watanabe, A., Kato, N., & Kato, T. (2002). Effects of creatine on mental fatigue and cerebral hemoglobin oxygenation. Neuroscience Research, 42(4), 279–285. https://doi.org/10.1016/S0168-0102(02)00007-X

Turner, C. E., Byblow, W. D., & Gant, N. (2015). Creatine supplementation enhances corticomotor excitability and cognitive performance during oxygen deprivation. Journal of Neuroscience, 35(4), 1773–1780. https://doi.org/10.1523/JNEUROSCI.3113-14.2015

Greenamyre, J. T., & Hastings, T. G. (2004). Parkinson’s—Divergent causes, convergent mechanisms. Science, 304(5674), 1120–1122. https://doi.org/10.1126/science.1098966

Writing Group for the NINDS Exploratory Trials in Parkinson Disease (NET-PD) Investigators. (2015). Effect of creatine monohydrate on clinical progression in patients with Parkinson disease: A randomized clinical trial. JAMA, 313(6), 584–593. https://doi.org/10.1001/jama.2015.120

Shtilbans, A., Reintsch, W. E., Piscopo, V. E. C., Krahn, A. I., & Durcan, T. M. (2024). Combination of tauroursodeoxycholic acid, co-enzyme Q10 and creatine demonstrates additive neuroprotective effects in in vitro models of Parkinson’s disease. Frontiers in Neuroscience, 18, 1492028. https://doi.org/10.3389/fnins.2024.1492028

Smith, A. N., Morris, J. K., Carbuhn, A. F., Herda, T. J., Keller, J. E., Sullivan, D. K., & Taylor, M. K. (2023). Creatine as a therapeutic target in Alzheimer’s disease. Current Developments in Nutrition, 7(11), 102011. https://doi.org/10.1016/j.cdnut.2023.102011

Mao, X., Kelty, T. J., Kerr, N. R., Childs, T. E., Roberts, M. D., & Booth, F. W. (2021). Creatine supplementation upregulates mTORC1 signaling and markers of synaptic plasticity in the dentate gyrus while ameliorating LPS-induced cognitive impairment in female rats. Nutrients, 13(8), 2758. https://doi.org/10.3390/nu13082758

Snow, W. M., Cadonic, C., Cortes-Perez, C., Adlimoghaddam, A., Roy Chowdhury, S. K., Thomson, E., Anozie, A., Bernstein, M. J., Gough, K., Fernyhough, P., Suh, M., & Albensi, B. C. (2020). Sex-specific effects of chronic creatine supplementation on hippocampal-mediated spatial cognition in the 3xTg mouse model of Alzheimer’s disease. Nutrients, 12(11), 3589. https://doi.org/10.3390/nu12113589

Taylor, M. K., Burns, J. M., Choi, I. Y., Herda, T. J., Lee, P., Smith, A. N., Sullivan, D. K., Swerdlow, R. H., & Wilkins, H. M. (2024). Protocol for a single-arm, pilot trial of creatine monohydrate supplementation in patients with Alzheimer’s disease. Pilot and Feasibility Studies, 10(1), 42. https://doi.org/10.1186/s40814-024-01469-5

Ross, C. A., Aylward, E. H., Wild, E. J., Langbehn, D. R., Long, J. D., Warner, J. H., Scahill, R. I., Leavitt, B. R., Stout, J. C., Paulsen, J. S., Reilmann, R., Unschuld, P. G., Wexler, A., Margolis, R. L., & Tabrizi, S. J. (2014). Huntington disease: Natural history, biomarkers and prospects for therapeutics. Nature Reviews Neurology, 10(4), 204–216. https://doi.org/10.1038/nrneurol.2014.24

Andreassen, O. A., Dedeoglu, A., Ferrante, R. J., Jenkins, B. G., Ferrante, K. L., Thomas, M., Friedlich, A., Browne, S. E., Schilling, G., Borchelt, D. R., Hersch, S. M., Ross, C. A., & Beal, M. F. (2001). Creatine increases survival and delays motor symptoms in a transgenic animal model of Huntington’s disease. Neurobiology of Disease, 8(3), 479–491. https://doi.org/10.1006/nbdi.2001.0406

Dedeoglu, A., Kubilus, J. K., Yang, L., Ferrante, K. L., Hersch, S. M., Beal, M. F., & Ferrante, R. J. (2003). Creatine therapy provides neuroprotection after onset of clinical symptoms in Huntington’s disease transgenic mice. Journal of Neurochemistry, 85(6), 1359–1367. https://doi.org/10.1046/j.1471-4159.2003.01706.x

Hersch, S. M., Gevorkian, S., Marder, K., Moskowitz, C., Feigin, A., Cox, M., Como, P., Zimmerman, C., Lin, M., Zhang, L., Ulug, A. M., Beal, M. F., Matson, W., Bogdanov, M., Ebbel, E., Zaleta, A., Kaneko, Y., Jenkins, B., Hevelone, N., Zhang, H., Yu, H., Schoenfeld, D., Ferrante, R., & Rosas, H. D. (2006). Creatine in Huntington disease is safe, tolerable, bioavailable in brain and reduces serum 8OH2’dG. Neurology, 66(2), 250–252. https://doi.org/10.1212/01.wnl.0000194318.74946.b6

Hersch, S. M., Schifitto, G., Oakes, D., Bredlau, A. L., Meyers, C. M., Nahin, R., Rosas, H. D., & Huntington Study Group CREST-E Investigators and Coordinators. (2017). The CREST-E study of creatine for Huntington disease: A randomized controlled trial. Neurology, 89(6), 594–601. https://doi.org/10.1212/WNL.0000000000004209

Hardiman, O., Al-Chalabi, A., Chio, A., Corr, E. M., Logroscino, G., Robberecht, W., Shaw, P. J., Simmons, Z., & van den Berg, L. H. (2017). Amyotrophic lateral sclerosis. Nature Reviews Disease Primers, 3, 17071. https://doi.org/10.1038/nrdp.2017.71

Goodall, E. F., & Morrison, K. E. (2006). Amyotrophic lateral sclerosis (motor neuron disease): Proposed mechanisms and pathways to treatment. Expert Reviews in Molecular Medicine, 8(11), 1–22. https://doi.org/10.1017/S1462399406010854

Klivenyi, P., Ferrante, R. J., Matthews, R. T., Bogdanov, M. B., Klein, A. M., Andreassen, O. A., Mueller, G., Wermer, M., Kaddurah-Daouk, R., & Beal, M. F. (1999). Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nature Medicine, 5(3), 347–350. https://doi.org/10.1038/6568

Shefner, J. M., Cudkowicz, M. E., Schoenfeld, D., Conrad, T., Taft, J., Chilton, M., Urbinelli, L., Qureshi, M., Zhang, H., Pestronk, A., Caress, J., Donofrio, P., Sorenson, E., Bradley, W., Lomen-Hoerth, C., Pioro, E., Rezania, K., Ross, M., Pascuzzi, R., Heiman-Patterson, T., Tandan, R., Mitsumoto, H., Rothstein, J., Smith-Palmer, T., MacDonald, D., & Burke, D.; NEALS Consortium. (2004). A clinical trial of creatine in ALS. Neurology, 63(9), 1656–1661. https://doi.org/10.1212/01.wnl.0000142992.81995.f0

Pastula, D. M., Moore, D. H., & Bedlack, R. S. (2012). Creatine for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database of Systematic Reviews, 2012(12), CD005225. https://doi.org/10.1002/14651858.CD005225.pub3

Lépine, J. P., & Briley, M. (2011). The increasing burden of depression. Neuropsychiatric Disease and Treatment, 7(Suppl 1), 3–7. https://doi.org/10.2147/NDT.S19617

Ahn, N. R., Leem, Y. H., Kato, M., & Chang, H. K. (2016). Effects of creatine monohydrate supplementation and exercise on depression-like behaviors and raphe 5-HT neurons in mice. Journal of Exercise Nutrition and Biochemistry, 20(3), 24–31. https://doi.org/10.20463/jenb.2016.09.20.3.4

Cunha, M. P., Pazini, F. L., Rosa, J. M., Ramos-Hryb, A. B., Oliveira, Á., Kaster, M. P., & Rodrigues, A. L. (2015). Creatine, similarly to ketamine, affords antidepressant-like effects in the tail suspension test via adenosine A₁ and A₂A receptor activation. Purinergic Signalling, 11(2), 215–227. https://doi.org/10.1007/s11302-015-9446-7

Kanekar, S., Ettaro, R., Hoffman, M. D., Ombach, H. J., Brown, J., Lynch, C., Sheth, C. S., & Renshaw, P. F. (2021). Sex-based impact of creatine supplementation on depressive symptoms, brain serotonin and SSRI efficacy in an animal model of treatment-resistant depression. International Journal of Molecular Sciences, 22(15), 8195. https://doi.org/10.3390/ijms22158195

Leem, Y. H., Kato, M., & Chang, H. (2018). Regular exercise and creatine supplementation prevent chronic mild stress-induced decrease in hippocampal neurogenesis via Wnt/GSK3β/β-catenin pathway. Journal of Exercise Nutrition and Biochemistry, 22(2), 1–6. https://doi.org/10.20463/jenb.2018.0009

Kim, S., Hong, K. B., Kim, S., Suh, H. J., & Jo, K. (2020). Creatine and taurine mixtures alleviate depressive-like behaviour in Drosophila melanogaster and mice via regulating Akt and ERK/BDNF pathways. Scientific Reports, 10(1), 11370. https://doi.org/10.1038/s41598-020-68424-1

Kondo, D. G., Forrest, L. N., Shi, X., Sung, Y. H., Hellem, T. L., Huber, R. S., & Renshaw, P. F. (2016). Creatine target engagement with brain bioenergetics: A dose-ranging phosphorus-31 magnetic resonance spectroscopy study of adolescent females with SSRI-resistant depression. Amino Acids, 48(8), 1941–1954. https://doi.org/10.1007/s00726-016-2194-3

Toniolo, R. A., Silva, M., Fernandes, F. B. F., Amaral, J. A. M. S., Dias, R. D. S., & Lafer, B. (2018). A randomized, double-blind, placebo-controlled, proof-of-concept trial of creatine monohydrate as adjunctive treatment for bipolar depression. Journal of Neural Transmission, 125(2), 247–257. https://doi.org/10.1007/s00702-017-1817-5

Kious, B. M., Sabic, H., Sung, Y. H., Kondo, D. G., & Renshaw, P. (2017). An open-label pilot study of combined augmentation with creatine monohydrate and 5-hydroxytryptophan for selective serotonin reuptake inhibitor- or serotonin-norepinephrine reuptake inhibitor-resistant depression in adult women. Journal of Clinical Psychopharmacology, 37(5), 578–583. https://doi.org/10.1097/JCP.0000000000000754

Chen, Y., Cao, X., Zang, W., Tan, S., Ou, C. Q., Shen, X., Gao, T., & Zhao, L. (2019). Intravenous administration of adenosine triphosphate and phosphocreatine combined with fluoxetine in major depressive disorder: Protocol for a randomized, double-blind, placebo-controlled pilot study. Trials, 20(1), 34. https://doi.org/10.1186/s13063-018-3115-4

Tran, K. H., Luki, J., Hanstock, S., Hanstock, C. C., Seres, P., Aitchison, K., & Le Melledo, J. M. (2023). Decreased GABA+ ratios referenced to creatine and phosphocreatine in the left dorsolateral prefrontal cortex of females of reproductive age with major depression. Journal of Psychiatry & Neuroscience, 48(4), E285–E294. https://doi.org/10.1503/jpn.230016

Henigsberg, N., Šarac, H., Radoš, M., Radoš, M., Ozretić, D., Foro, T., Erdeljić Turk, V., Hrabač, P., Bajs Janović, M., Rak, B., & Kalember, P. (2017). Lower choline-containing metabolites/creatine (Cr) rise and failure to sustain NAA/Cr levels in the dorsolateral prefrontal cortex are associated with depressive episode recurrence under maintenance therapy: A proton magnetic resonance spectroscopy retrospective cohort study. Frontiers in Psychiatry, 8, 277. https://doi.org/10.3389/fpsyt.2017.00277

Forbes, S. C., Cordingley, D. M., Cornish, S. M., Gualano, B., Roschel, H., Ostojic, S. M., Rawson, E. S., Roy, B. D., Prokopidis, K., Giannos, P., & Candow, D. G. (2022). Effects of creatine supplementation on brain function and health. Nutrients, 14(5), 921. https://doi.org/10.3390/nu14050921

Vagnozzi, R., Signoretti, S., Floris, R., Marziali, S., Manara, M., Amorini, A. M., Belli, A., Di Pietro, V., DʼUrso, S., Pastore, F. S., Lazzarino, G., & Tavazzi, B. (2013). Decrease in N-acetylaspartate following concussion may be coupled to decrease in creatine. Journal of Head Trauma Rehabilitation, 28(4), 284–292. https://doi.org/10.1097/HTR.0b013e3182795045

Signoretti, S., Di Pietro, V., Vagnozzi, R., Lazzarino, G., Amorini, A. M., Belli, A., D’Urso, S., & Tavazzi, B. (2010). Transient alterations of creatine, creatine phosphate, N-acetylaspartate and high-energy phosphates after mild traumatic brain injury in the rat. Molecular and Cellular Biochemistry, 333(1–2), 269–277. https://doi.org/10.1007/s11010-009-0228-9

Sullivan, P. G., Geiger, J. D., Mattson, M. P., & Scheff, S. W. (2000). Dietary supplement creatine protects against traumatic brain injury. Annals of Neurology, 48(5), 723–729. https://doi.org/10.1002/ana.410480515

Ainsley Dean, P. J., Arikan, G., Opitz, B., & Sterr, A. (2017). Potential for use of creatine supplementation following mild traumatic brain injury. Concussion, 2(2), CNC34. https://doi.org/10.2217/cnc-2016-0016

Sakellaris, G., Kotsiou, M., Tamiolaki, M., Kalostos, G., Tsapaki, E., Spanaki, M., Spilioti, M., Charissis, G., & Evangeliou, A. (2006). Prevention of complications related to traumatic brain injury in children and adolescents with creatine administration: An open label randomized pilot study. Journal of Trauma, 61(2), 322–329. https://doi.org/10.1097/01.ta.0000230269.46108.d5

Sakellaris, G., Nasis, G., Kotsiou, M., Tamiolaki, M., Charissis, G., & Evangeliou, A. (2008). Prevention of traumatic headache, dizziness and fatigue with creatine administration: A pilot study. Acta Paediatrica, 97(1), 31–34. https://doi.org/10.1111/j.1651-2227.2007.00529.x

Sakellaris, G., Partalis, N., Nasis, G., Kotsiou, M., Tamiolaki, M., Bouloukaki, E., & Evangeliou, A. (2012). Outcome of traumatic dysarthria and lingual problems of understanding with creatine administration: An open label randomized pilot study. Journal of Trauma & Treatment, 1, 120. https://doi.org/10.4172/2167-1222.1000120

Gerbatin, R. R., Silva, L. F. A., Hoffmann, M. S., Della-Pace, I. D., do Nascimento, P. S., Kegler, A., de Zorzi, V. N., Cunha, J. M., Botelho, P., Neto, J. B. T., Furian, A. F., Oliveira, M. S., Fighera, M. R., & Royes, L. F. F. (2019). Delayed creatine supplementation counteracts reduction of GABAergic function and protects against seizure susceptibility after traumatic brain injury in rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 92, 328–338. https://doi.org/10.1016/j.pnpbp.2019.02.004

Saraiva, A. L., Ferreira, A. P., Silva, L. F., Hoffmann, M. S., Dutra, F. D., Furian, A. F., Oliveira, M. S., Fighera, M. R., & Royes, L. F. (2012). Creatine reduces oxidative stress markers but does not protect against seizure susceptibility after severe traumatic brain injury. Brain Research Bulletin, 87(2–3), 180–186. https://doi.org/10.1016/j.brainresbull.2011.10.010

Views:

19

Downloads:

12

Published
2025-09-30
Citations
How to Cite
Amin Omidi, Maja Ćwiek, Klaudia Malec, Bartosz Krawiec, Bartłomiej Zarębski, Olaf Jadanowski, Jakub Sójka, Maksymilian Szombara, Michał Mokrzyński, & Piotr Szyszka. (2025). THE ROLE OF CREATINE IN NEUROLOGICAL DISORDERS: A LITERATURE REVIEW. International Journal of Innovative Technologies in Social Science, 5(3(47). https://doi.org/10.31435/ijitss.3(47).2025.3722

Most read articles by the same author(s)