THE IMPACT OF REFRACTIVE ERRORS AND THEIR CORRECTION ON VISUAL-MOTOR PERFORMANCE IN TEAM SPORT ATHLETES: A NARRATIVE REVIEW
Abstract
Efficient visual processing is crucial in team sports, where accurate spatial perception and quick reaction time directly affect the quality of performance. Even mild refractive errors (e.g., myopia, hyperopia, or astigmatism) can impair visuomotor skills and result in tactical errors, reduced precision, and delayed responses. This review aims to examine the impact of refractive defects and their correction on visual performance in athletes, highlighting the importance of proper vision management in competitive settings. Studies consistently show that uncorrected refractive errors negatively affect reaction time, depth perception, stereopsis, and spatial awareness, which are all essential for rapid decision-making during dynamic game situations. In contrast, proper correction improves visual acuity and contrast sensitivity, reduces neural load, and enhances visuomotor coordination, allowing athletes to process visual information more efficiently. Each correction technique, including spectacles, contact lenses, refractive surgery, and sports-specific protective eyewear, has particular advantages and limitations depending on the type and demands of the sport. Vision correction is therefore crucial for optimizing sports performance; however, standardized correction guidelines tailored to athletic requirements are still lacking. Further research using advanced tools such as VR, fMRI, and eye-tracking is needed, along with routine vision screening and individualized correction planning for athletes.
References
Clark, J., Betz, B., Borders, L., Kuehn-Himmler, A., Hasselfeld, K., & Divine, J. (2020). Vision training and reaction training for improving performance and reducing injury risk in athletes: Sports vision training. J Sports Perform Vis, 2(1), 4. https://doi.org/10.22374/jspv.v2i1.4
Ryu, D., Abernethy, B., Mann, D. L., Poolton, J. M., & Gorman, A. D. (2013). The role of central and peripheral vision in expert decision making. Perception, 42(6), 591–607. https://doi.org/10.1068/p7487
Beckerman, S. A., & Hitzeman, S. (2001). The ocular and visual characteristics of an athletic population. Optometry, 72(8), 498–509.
Jorge, J., & Fernandes, P. (2019). Static and dynamic visual acuity and refractive errors in elite football players. Clinical and Experimental Optometry, 102(1), 51–56. https://doi.org/10.1111/cxo.12812
Jorge, J., Diaz-Rey, A., & Lira, M. (2022). Prevalence of binocular vision dysfunctions in professional football players. Clinical and Experimental Optometry, 105(8), 853–859. https://doi.org/10.1080/08164622.2021.2002667
Agostini, V., Chiaramello, E., Canavese, L., Bredariol, C., & Knaflitz, M. (2013). Postural sway in volleyball players. Human Movement Science, 32(3), 445–456. https://doi.org/10.1016/j.humov.2013.01.002
Schorer, J., Rienhoff, R., Fischer, L., & Baker, J. (2013). Foveal and peripheral fields of vision influences perceptual skill in anticipating opponents’ attacking position in volleyball. Applied Psychophysiology and Biofeedback, 38(3), 185–192. https://doi.org/10.1007/s10484-013-9224-7
Mangine, G. T., Hoffman, J. R., Wells, A. J., Gonzalez, A. M., Rogowski, J. P., Townsend, J. R., Jajtner, A. R., Beyer, K. S., Bohner, J. D., Pruna, G. J., Fragala, M. S., & Stout, J. R. (2014). Visual tracking speed is related to basketball-specific measures of performance in NBA players. Journal of Strength and Conditioning Research, 28(9), 2406–2414. https://doi.org/10.1519/JSC.0000000000000550
Fujii, K., Shinya, M., Yamashita, D., Oda, S., & Kouzaki, M. (2014). Superior reaction to changing directions for skilled basketball defenders but not linked with specialised anticipation. European Journal of Sport Science, 14(3), 209–216. https://doi.org/10.1080/17461391.2013.780098
Ryu, D., Mann, D. L., Abernethy, B., & Poolton, J. M. (2016). Gaze-contingent training enhances perceptual skill acquisition. Journal of Vision, 16(2), 2. https://doi.org/10.1167/16.2.2
Laby, D. M., & Kirschen, D. G. (2017). The refractive error of professional baseball players. Optometry and Vision Science, 94(5), 564–573. https://doi.org/10.1097/OPX.0000000000001067
Chang, S. T., Liu, Y. H., Lee, J. S., & See, L. C. (2015). Comparing sports vision among three groups of soft tennis adolescent athletes: Normal vision, refractive errors with and without correction. Indian Journal of Ophthalmology, 63(9), 716–721. https://doi.org/10.4103/0301-4738.170974
Williams, K. M., Verhoeven, V. J., Cumberland, P., Bertelsen, G., Wolfram, C., Buitendijk, G. H., Hofman, A., van Duijn, C. M., Vingerling, J. R., Kuijpers, R. W., Höhn, R., Mirshahi, A., Khawaja, A. P., Luben, R. N., Erke, M. G., von Hanno, T., Mahroo, O., Hogg, R., Gieger, C., … Hammond, C. J. (2015). Prevalence of refractive error in Europe: The European Eye Epidemiology (E3) Consortium. European Journal of Epidemiology, 30(4), 305–315. https://doi.org/10.1007/s10654-015-0010-0
Vitale, S., Ellwein, L., Cotch, M. F., Ferris, F. L., III, & Sperduto, R. (2008). Prevalence of refractive error in the United States, 1999–2004. Archives of Ophthalmology, 126(8), 1111–1119. https://doi.org/10.1001/archopht.126.8.1111
Pan, C. W., Zheng, Y. F., Anuar, A. R., Chew, M., Gazzard, G., Aung, T., Cheng, C. Y., Wong, T. Y., & Saw, S. M. (2013). Prevalence of refractive errors in a multiethnic Asian population: The Singapore epidemiology of eye disease study. Investigative Ophthalmology & Visual Science, 54(4), 2590–2598. https://doi.org/10.1167/iovs.13-11725
Rim, T. H., Kim, S. H., Lim, K. H., Choi, M., Kim, H. Y., & Baek, S. H. (2016). Refractive errors in Koreans: The Korea National Health and Nutrition Examination Survey 2008–2012. Korean Journal of Ophthalmology, 30(3), 214–224. https://doi.org/10.3341/kjo.2016.30.3.214
Hashemi, H., Pakzad, R., Ali, B., Yekta, A., Ostadimoghaddam, H., Heravian, J., Yekta, R., & Khabazkhoob, M. (2020). Prevalence of refractive errors in Iranian university students in Kazerun. Journal of Current Ophthalmology, 32(1), 75–81. https://doi.org/10.1016/j.joco.2018.08.001
Weise, K. K., Galt, S. J., Hale, M. H., Springer, D. B., & Swanson, M. W. (2021). Pre-participation vision screening and comprehensive eye care in National Collegiate Athletic Association athletes. Optometry and Vision Science, 98(7), 764–770. https://doi.org/10.1097/OPX.0000000000001738
Queirós, A., Villa-Collar, C., Gutiérrez, A. R., Jorge, J., & González-Méijome, J. M. (2012). Quality of life of myopic subjects with different methods of visual correction using the NEI RQL-42 questionnaire. Eye & Contact Lens, 38(2), 116–121. https://doi.org/10.1097/ICL.0b013e3182480e97
González-Pérez, J., Sánchez García, Á., & Villa-Collar, C. (2019). Vision-specific quality of life: Laser-assisted in situ keratomileusis versus overnight contact lens wear. Eye & Contact Lens, 45(1), 34–39. https://doi.org/10.1097/ICL.0000000000000538
Karadağ, M. F. (2022). Comparison of visual and refractive outcomes between femtosecond laser-assisted in situ keratomileusis (FS-LASIK) and photorefractive keratectomy (PRK): A long-term outcomes analysis. Journal of Health Science and Medicine, 5(1), 257–261. https://doi.org/10.32322/jhsm.1011444
Wagoner, M. D., Wickard, J. C., Wandling, G. R., Jr., Milder, L. C., Rauen, M. P., Kitzmann, A. S., Sutphin, J. E., & Goins, K. M. (2011). Initial resident refractive surgical experience: Outcomes of PRK and LASIK for myopia. Journal of Refractive Surgery, 27(3), 181–188. https://doi.org/10.3928/1081597X-20100521-02
Horáková, M., Vlková, E., Loukotová, V., & Hlinomazová, Z. (2007). Srovnání metody LASIK a implantace ICL při korekci střední a vysoké hyperopie. I. část [Comparison of the two methods, LASIK and ICL in mild and high hyperopia correction—Part one]. Česká a slovenská oftalmologie, 63(3), 143–153.
Huang, D., Schallhorn, S. C., Sugar, A., Farjo, A. A., Majmudar, P. A., Trattler, W. B., & Tanzer, D. J. (2009). Phakic intraocular lens implantation for the correction of myopia: A report by the American Academy of Ophthalmology. Ophthalmology, 116(11), 2244–2258. https://doi.org/10.1016/j.ophtha.2009.08.018
Alshamrani, A. A., & Alharbi, S. S. (2019). Phakic intraocular lens implantation for the correction of hyperopia. Journal of Cataract and Refractive Surgery, 45(10), 1503–1511. https://doi.org/10.1016/j.jcrs.2019.05.051
Johnson, K. L., Carney, L. G., Mountford, J. A, Collins, M. J., Cluff, S., & Collins, P. K. (2007). Visual performance after overnight orthokeratology. Contact Lens & Anterior Eye, 30(1), 29–36. https://doi.org/10.1016/j.clae.2006.12.001
Jorge, J., Cymbron, F., da Silva, P. H., & Almeida Couto, P. (2024). Comparative analysis of visual and cognitive performance in esports athletes and soccer players. Clinical and Experimental Optometry. Advance online publication. https://doi.org/10.1080/08164622.2024.2430637
Mohanraj, M., & Karthikeyan, P. (2017). Visual reaction time in myopic and emmetropic school children. National Journal of Physiology, Pharmacy and Pharmacology, 7(8), 826–830. https://doi.org/10.5455/NJPPP.2017.7.0824524082016
Wen, G., Tarczy-Hornoch, K., McKean-Cowdin, R., Cotter, S. A., Borchert, M., Lin, J., Kim, J., & Varma, R.; Multi-Ethnic Pediatric Eye Disease Study Group. (2013). Prevalence of myopia, hyperopia, and astigmatism in non-Hispanic White and Asian children: Multi-ethnic pediatric eye disease study. Ophthalmology, 120(10), 2109–2116. https://doi.org/10.1016/j.ophtha.2013.06.039
Ballet, C., Barreto, J., Hope, E., & Casanova, F. (2023). What is the visual behaviour and attentional effort of football players in different positions during a real 11v11 game? A pilot study. F1000Research, 12, 679. https://doi.org/10.12688/f1000research.134231.4
Oliveira, M., Fuste, R., Gene-Morales, J., Gené-Sampedro, A., & Jorge, J. (2025). Relationship between refractive error, visual acuity, and postural stability in elite football players. Applied Sciences, 15(10), 5437. https://doi.org/10.3390/app15105437
Limanowski, J., Kirilina, E., & Blankenburg, F. (2017). Neuronal correlates of continuous manual tracking under varying visual movement feedback in a virtual reality environment. NeuroImage, 146, 81–89. https://doi.org/10.1016/j.neuroimage.2016.11.009
Alwashmi, K., Meyer, G., Rowe, F., & Ward, R. (2024). Enhancing learning outcomes through multisensory integration: An fMRI study of audio-visual training in virtual reality. NeuroImage, 285, 120483. https://doi.org/10.1016/j.neuroimage.2023.120483
Nelles, G., Pscherer, A., de Greiff, A., & Esser, J. (2010). Brain activation of eye movements in subjects with refractive error. Eye and Brain, 2, 57–62. https://doi.org/10.2147/EB.S9823
Views:
22
Downloads:
30
Copyright (c) 2025 Klaudia Malec, Maja Ćwiek, Bartłomiej Zarębski, Bartosz Krawiec, Olaf Jadanowski, Jakub Sójka, Maksymilian Szombara, Michał Mokrzyński, Jakub Kamiński, Jakub Roszak

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.





