CHRONIC USE OF SWEETENERS AND INSULIN RESISTANCE
Abstract
The aim of this paper is to critically analyze the available data on the chronic use of low-calorie sweeteners (LCS) and their potential impact on the development of insulin resistance (IR). Insulin resistance, a key element of metabolic syndrome and a risk factor for type 2 diabetes, is increasing in parallel with the rising consumption of sweeteners used as sugar substitutes.
The review covers the classification of LCS (synthetic, natural, sugar alcohols), their metabolism, and biological mechanisms that may modulate carbohydrate metabolism. Potential pathways of action include activation of sweet taste receptors T1R2/T1R3 in the intestine and pancreas, effects on incretin secretion, modulation of gut microbiota, regulation of appetite in the central nervous system, and interactions with insulin signaling pathways in peripheral tissues.
Clinical studies indicate that short-term LCS intake usually does not affect glycemia and insulinemia in healthy individuals. However, in people with obesity or without prior exposure, an increased glycemic and insulin response has been observed, particularly after sucralose. Stevia has shown hypoglycemic benefits in some studies, while aspartame remains largely neutral. Data on saccharin and microbiota suggest possible individual sensitivity. Observational studies associate chronic LCS intake with a higher risk of type 2 diabetes, although this may result from reverse causality.
The conclusions emphasize that LCS may support sugar and body weight reduction when used as part of a healthy lifestyle. However, they do not provide universal protection against IR, and their effects depend on the type of sweetener, metabolic status, and gut microbiota. Long-term randomized studies including diverse populations are required.
References
DeFronzo, R. A., & Ferrannini, E. (1991). Insulin resistance: A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care, 14(3), 173–194. https://doi.org/10.2337/diacare.14.3.173
Alberti, K. G. M. M., Eckel, R. H., Grundy, S. M., Zimmet, P. Z., Cleeman, J. I., Donato, K. A., Smith, S. C., Jr. (2009). Harmonizing the metabolic syndrome: A joint interim statement. Circulation, 120(16), 1640–1645.
Tabák, A. G., Jokela, M., Akbaraly, T. N., Brunner, E. J., Kivimäki, M., & Witte, D. R. (2009). Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes. The Lancet, 373(9682), 2215–2221.
Reaven, G. M. (2011). Insulin resistance: The link between obesity and cardiovascular disease. Medical Clinics of North America, 95(5), 875–892.
Sylvetsky, A. C., & Rother, K. I. (2016). Trends in the consumption of low-calorie sweeteners. Physiology & Behavior, 164(Pt B), 446–450.
Gardner, C., Wylie-Rosett, J., Gidding, S. S., Steffen, L. M., Johnson, R. K., Reader, Lichtenstein, A. H. (2012). Nonnutritive sweeteners: Current use and health perspectives. Diabetes Care, 35(8), 1798–1808.
Fitch, C., & Keim, K. S. (2012). Position of the Academy of Nutrition and Dietetics: Use of nutritive and nonnutritive sweeteners. Journal of the Academy of Nutrition and Dietetics, 112(5), 739–758.
Magnuson, B. A., Carakostas, M. C., Moore, N. H., Poulos, S. P., & Renwick, A. G. (2016). Biological fate of low-calorie sweeteners. Nutrition Reviews, 74(11), 670–689.
Pepino, M. Y. (2015). Metabolic effects of non-nutritive sweeteners. Physiology & Behavior, 152(Pt B), 450–455.
Romo-Romo, A., Aguilar-Salinas, C. A., Brito-Córdova, G. X., Gómez-Díaz, R. A., Valentin, D. V., & Almeda-Valdés, P. (2016). Effects of the non-nutritive sweeteners on glucose metabolism and appetite regulating hormones: Systematic review of observational prospective studies and clinical trials. PLoS One, 11(8), e0161264. https://doi.org/10.1371/journal.pone.0161264
Suez, J., Korem, T., Zilberman-Schapira, G., Segal, E., & Elinav, E. (2015). Non-caloric artificial sweeteners and the microbiome: Findings and challenges. Gut Microbes, 6(2), 149–155.
Goyal, S. K., Samsher, & Goyal, R. K. (2010). Stevia (Stevia rebaudiana) a bio-sweetener: A review. International Journal of Food Sciences and Nutrition, 61(1), 1–10.
Shourideh, M., Mohammadi, A., Ziaiifar, A. M., Aghajani, N., Mortazavi, S. A., & Davoodi, S. H. (2021). Monk fruit extract: Functional food ingredient with multiple health benefits. Journal of Food Science and Technology, 58(9), 3257–3265.
Roberts, A., & Renwick, A. G. (2008). Sucralose metabolism and pharmacokinetics in man. Food and Chemical Toxicology, 46(Suppl 1), S2–S65.
Livesey, G. (2003). Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties. Nutrition Research Reviews, 16(2), 163–191.
Sylvetsky, A. C., Bauman, V., Blau, J. E., Garraffo, H. M., Walter, P. J., & Rother, K. I. (2017). Plasma concentrations of sucralose in children and adults. Toxicological & Environmental Chemistry, 99(3), 535–542.
Margolskee, R. F., Dyer, J., Kokrashvili, Z., Salmon, K. S., Ilegems, E., Daly, K., Zuker, C. S. (2007). T1R3 and gustducin in gut sense sugars to regulate expression of Na⁺-glucose cotransporter 1. Proceedings of the National Academy of Sciences of the United States of America, 104(38), 15075–15080.
Brown, R. J., Walter, M., & Rother, K. I. (2009). Ingestion of diet soda before a glucose load augments glucagon-like peptide-1 secretion. Diabetes Care, 32(12), 2184–2186.
Ford, H. E., Peters, V., Martin, N. M., Sleeth, M. L., Ghatei, M. A., Frost, G. S., Bloom, S. R. (2011). Effects of oral ingestion of sucralose on gut hormone response and appetite in healthy normal-weight subjects. European Journal of Clinical Nutrition, 65(4), 508–513.
Pepino, M. Y., Tiemann, C. D., Patterson, B. W., Wice, B. M., & Klein, S. (2013). Sucralose affects glycemic and hormonal responses to an oral glucose load. Diabetes Care, 36(9), 2530–2535.
Serrano, J., Smith, K. R., Crouch, A. L., Sharma, V., Yi, F., Vargova, V., Elinav, E. (2021). High-dose saccharin supplementation does not induce gut microbiota changes or glucose intolerance in healthy humans and mice. Microbiome, 9(1), 11. https://doi.org/10.1186/s40168-020-00984-3
Canfora, E. E., Meex, R. C. R., Venema, K., & Blaak, E. E. (2019). Gut microbial metabolites in obesity, NAFLD and T2DM. Nature Reviews Endocrinology, 15(5), 261–273.
Teff, K. L., & Engelman, K. (1996). Oral sensory stimulation influences glucose and insulin responses after intragastric glucose administration in humans. American Journal of Physiology, 270(6 Pt 2), R1371–R1379.
Green, E., & Murphy, C. (2012). Altered processing of sweet taste in the brain of diet soda drinkers. Physiology & Behavior, 107(4), 560–567.
Palmnäs, M. S., Cowan, T. E., Bomhof, M. R., Su, J., Reimer, R. A., Vogel, H. J., Shearer, J. (2014). Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PLoS One, 9(10), e109841.
Mace, O. J., Affleck, J., Patel, N., & Kellett, G. L. (2007). Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. Journal of Physiology, 582(Pt 1), 379–392.
Simon, B. R., Parlee, S. D., Learman, B. S., Mori, H., Scheller, E. L., Cawthorn, W. P., MacDougald, O. A. (2014). Sweet taste receptor-deficient mice have decreased adiposity and increased bone mass. PLoS One, 9(1), e86454.
Brown, A. W., Bohan Brown, M. M., Onken, K. L., & Beitz, D. C. (2011). Short-term consumption of sucralose with and without carbohydrate produces different effects on fasting and postprandial GLP-1 and insulin in healthy adults. European Journal of Clinical Nutrition, 65(3), 414–421.
Anton, S. D., Martin, C. K., Han, H., Coulon, S., Cefalu, W. T., Geiselman, P., Williamson, D. A. (2010). Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels. Appetite, 55(1), 37–43.
Renwick, A. G., & Molinary, S. V. (2010). Sweet-tasting low-calorie sweeteners in human nutrition. British Journal of Nutrition, 104(10), 1415–1428.
Grotz, V. L., Henry, R. R., McGill, J. B., Prince, M. J., Shamoon, H., Trout, J. R., Davidson, M. B. (2003). Lack of effect of sucralose on glucose homeostasis in subjects with type 2 diabetes. Journal of the American Dietetic Association, 103(12), 1607–1612.
Barriocanal, L. A., Palacios, M., Benítez, G., Benítez, S., Jiménez, J. T., & Jiménez, N. (2008). Apparent lack of pharmacological effect of steviol glycosides used as sweeteners in humans. Food and Chemical Toxicology, 46(7 Suppl), S63–S69.
Peters, J. C., Beck, J., Cardel, M., Wyatt, H. R., Foster, G. D., Pan, Z., Hill, J. O. (2016). The effects of water and non-nutritive sweetened beverages on weight loss and weight maintenance: A randomized clinical trial. American Journal of Clinical Nutrition, 104(6), 1433–1442.
Imamura, F., O’Connor, L., Ye, Z., Mursu, J., Hayashino, Y., Bhupathiraju, S. N., Forouhi, N. G. (2015). Consumption of sugar-sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: Systematic review, meta-analysis, and estimation of population attributable fraction. BMJ, 351, h3576. https://doi.org/10.1136/bmj.h3576
EFSA Panel on Food Additives and Nutrient Sources Added to Food (ANS). (2015). Scientific opinion on the safety of the proposed extension of use of steviol glycosides (E 960) as a food additive. EFSA Journal, 13(6), 4146.
American Diabetes Association Professional Practice Committee. (2023). Standards of medical care in diabetes—2023. Diabetes Care, 46(S1), S1–S194. https://doi.org/10.2337/dc23-S001
World Health Organization. (2023). WHO guideline: Use of non-sugar sweeteners. https://www.who.int/publications/i/item/WHO-2013-nutrition_guideline_NSSs
JECFA. (2017). Evaluation of certain food additives: Eighty-fourth report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization. https://www.who.int/publications/i/item/9789241210168
Zhu, Y., Olsen, S. F., Mendola, P., Halldorsson, T. I., Rawal, S., Hinkle, S. N., Williams, M. A. (2017). Maternal consumption of artificially sweetened beverages during pregnancy, and offspring growth through 7 years of age: A prospective cohort study. International Journal of Epidemiology, 46(5), 1499–1508. https://doi.org/10.1093/ije/dyx046
Ruanpeng, D., Thongprayoon, C., Cheungpasitporn, W., & Harindhanavudhi, T. (2017). Sugar and artificially sweetened beverages linked to obesity: A systematic review and meta-analysis. QJM: An International Journal of Medicine, 110(8), 513–520.
Mattes, R. D., & Popkin, B. M. (2009). Nonnutritive sweetener consumption in humans: Effects on appetite and food intake and their putative mechanisms. American Journal of Clinical Nutrition, 89(1), 1–14.
Views:
108
Downloads:
18
Copyright (c) 2025 Olaf Jadanowski, Zbigniew Klimek, Patryk Biesaga, Julia Lipiec, Wojciech Pabis, Daria Litworska-Sójka, Weronika Sobota, Alicja Bury, Kamil Nieroda, Ilona Bednarek

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.