SUPPLEMENTING BOTH MUSCLES AND THE BRAIN: A LITERATURE REVIEW ON THE POTENTIAL OF CREATINE SUPPLEMENTATION IN COGNITIVE PERFORMANCE IN SELECTED DEMOGRAPHIC SUBGROUPS
Abstract
Creatin is one of the most common supplements for athletes and has been well-studied for its safety and efficiency. It has a documented impact on enhanced performance and recovery among sportsmen. Considering, many researchers have decided to study its impact on cognitive performance in different patient demographics. The positive impact of creatin on cognition observed in studies on athletes sparked interest in its usefulness in different demographic groups. Its favorable price and nearly adverse effect-free profile would make it a great nutraceutical for large-scale use. This study aimed to review the currently published clinical trials on the effect of creatin on cognitive performance in specific subgroups, i.e. healthy adult participants, healthy elderly participants as well as patients suffering from certain psychiatric conditions. The analysis of the published trials showed weak to moderate evidence on creatin’s role in cognitive performance improvement. More large-scale randomized studies are warranted to establish the therapeutic value of creatin supplementation on mental processes.
References
Adcock, K. H., Nedelcu, J., Loenneker, T., Martin, E., Wallimann, T., & Wagner, B. P. (2002). Neuroprotection of creatine supplementation in neonatal rats with transient cerebral hypoxia-ischemia. Dev Neurosci, 24(5), 382-388. https://doi.org/10.1159/000069043
Allah Yar, R., Akbar, A., & Iqbal, F. (2015). Creatine monohydrate supplementation for 10 weeks mediates neuroprotection and improves learning/memory following neonatal hypoxia ischemia encephalopathy in female albino mice. Brain Res, 1595, 92-100. https://doi.org/10.1016/j.brainres.2014.11.017
Alves, C. R., Merege Filho, C. A., Benatti, F. B., Brucki, S., Pereira, R. M., de Sá Pinto, A. L., Lima, F. R., Roschel, H., & Gualano, B. (2013). Creatine supplementation associated or not with strength training upon emotional and cognitive measures in older women: a randomized double-blind study. PLoS One, 8(10), e76301. https://doi.org/10.1371/journal.pone.0076301
Aujla, R. S., Zubair, M., & Patel, R. (2025). Creatine Phosphokinase. In StatPearls. StatPearls Publishing
Copyright © 2025, StatPearls Publishing LLC.
Balsom, P. D., Söderlund, K., & Ekblom, B. (1994). Creatine in humans with special reference to creatine supplementation. Sports Med, 18(4), 268-280. https://doi.org/10.2165/00007256-199418040-00005
Béard, E., & Braissant, O. (2010). Synthesis and transport of creatine in the CNS: importance for cerebral functions. J Neurochem, 115(2), 297-313. https://doi.org/10.1111/j.1471-4159.2010.06935.x
Becque, M. D., Lochmann, J. D., & Melrose, D. R. (2000). Effects of oral creatine supplementation on muscular strength and body composition. Med Sci Sports Exerc, 32(3), 654-658. https://doi.org/10.1097/00005768-200003000-00016
Benton, D., & Donohoe, R. (2011). The influence of creatine supplementation on the cognitive functioning of vegetarians and omnivores. Br J Nutr, 105(7), 1100-1105. https://doi.org/10.1017/s0007114510004733
Bertin, M., Pomponi, S. M., Kokuhuta, C., Iwasaki, N., Suzuki, T., & Ellington, W. R. (2007). Origin of the genes for the isoforms of creatine kinase. Gene, 392(1-2), 273-282. https://doi.org/10.1016/j.gene.2007.01.007
Boa Sorte Silva, N. C., Barha, C. K., Erickson, K. I., Kramer, A. F., & Liu-Ambrose, T. (2024). Physical exercise, cognition, and brain health in aging. Trends Neurosci, 47(6), 402-417. https://doi.org/10.1016/j.tins.2024.04.004
Bozzatello, P., Novelli, R., Montemagni, C., Rocca, P., & Bellino, S. (2024). Nutraceuticals in Psychiatric Disorders: A Systematic Review. Int J Mol Sci, 25(9). https://doi.org/10.3390/ijms25094824
Braissant, O. (2012). Creatine and guanidinoacetate transport at blood-brain and blood-cerebrospinal fluid barriers. J Inherit Metab Dis, 35(4), 655-664. https://doi.org/10.1007/s10545-011-9433-2
Brosnan, M. E., & Brosnan, J. T. (2016). The role of dietary creatine. Amino Acids, 48(8), 1785-1791. https://doi.org/10.1007/s00726-016-2188-1
Bruckmaier, M., Tachtsidis, I., Phan, P., & Lavie, N. (2020). Attention and Capacity Limits in Perception: A Cellular Metabolism Account. J Neurosci, 40(35), 6801-6811. https://doi.org/10.1523/jneurosci.2368-19.2020
Buford, T. W., Kreider, R. B., Stout, J. R., Greenwood, M., Campbell, B., Spano, M., Ziegenfuss, T., Lopez, H., Landis, J., & Antonio, J. (2007). International Society of Sports Nutrition position stand: creatine supplementation and exercise. J Int Soc Sports Nutr, 4, 6. https://doi.org/10.1186/1550-2783-4-6
Burke, D. G., Chilibeck, P. D., Parise, G., Candow, D. G., Mahoney, D., & Tarnopolsky, M. (2003). Effect of creatine and weight training on muscle creatine and performance in vegetarians. Med Sci Sports Exerc, 35(11), 1946-1955. https://doi.org/10.1249/01.Mss.0000093614.17517.79
Candow, D. G., Chilibeck, P. D., Forbes, S. C., Fairman, C. M., Gualano, B., & Roschel, H. (2022). Creatine supplementation for older adults: Focus on sarcopenia, osteoporosis, frailty and Cachexia. Bone, 162, 116467. https://doi.org/10.1016/j.bone.2022.116467
Dechent, P., Pouwels, P. J., Wilken, B., Hanefeld, F., & Frahm, J. (1999). Increase of total creatine in human brain after oral supplementation of creatine-monohydrate. Am J Physiol, 277(3), R698-704. https://doi.org/10.1152/ajpregu.1999.277.3.R698
Dennis, E. L., Jahanshad, N., Toga, A. W., McMahon, K. L., de Zubicaray, G. I., Hickie, I., Wright, M. J., & Thompson, P. M. (2013). DEVELOPMENT OF THE "RICH CLUB" IN BRAIN CONNECTIVITY NETWORKS FROM 438 ADOLESCENTS & ADULTS AGED 12 TO 30. Proc IEEE Int Symp Biomed Imaging, 624-627. https://doi.org/10.1109/isbi.2013.6556552
Dragana Zanini, N. T., Sergej M Ostojic. (2024). Creatine with guanidinoacetic acid improves prefrontal brain oxygenation before, during, and after a cognitive task: A randomized controlled pilot trial. Nutrition and Health, 21(2), 363-368. https://doi.org/10.1177/02601060241300236
Dringen, R., Gutterer, J. M., & Hirrlinger, J. (2000). Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem, 267(16), 4912-4916. https://doi.org/10.1046/j.1432-1327.2000.01597.x
Faulkner, P., Paioni, S. L., Kozhuharova, P., Orlov, N., Lythgoe, D. J., Daniju, Y., Morgenroth, E., Barker, H., & Allen, P. (2021). Relationship between depression, prefrontal creatine and grey matter volume. J Psychopharmacol, 35(12), 1464-1472. https://doi.org/10.1177/02698811211050550
Forrester, S. J., Kikuchi, D. S., Hernandes, M. S., Xu, Q., & Griendling, K. K. (2018). Reactive Oxygen Species in Metabolic and Inflammatory Signaling. Circ Res, 122(6), 877-902. https://doi.org/10.1161/circresaha.117.311401
Fox, J., Mearns, E. S., Li, J., Rosettie, K. L., Majda, T., Lin, H., & Kowal, S. L. (2025). Indirect Costs of Alzheimer's Disease: Unpaid Caregiver Burden and Patient Productivity Loss. Value Health, 28(4), 519-526. https://doi.org/10.1016/j.jval.2024.10.3851
Green, A. L., Hultman, E., Macdonald, I. A., Sewell, D. A., & Greenhaff, P. L. (1996). Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. Am J Physiol, 271(5 Pt 1), E821-826. https://doi.org/10.1152/ajpendo.1996.271.5.E821
Greenhaff, P. L., Bodin, K., Soderlund, K., & Hultman, E. (1994). Effect of oral creatine supplementation on skeletal muscle phosphocreatine resynthesis. Am J Physiol, 266(5 Pt 1), E725-730. https://doi.org/10.1152/ajpendo.1994.266.5.E725
Hammett, S. T., Wall, M. B., Edwards, T. C., & Smith, A. T. (2010). Dietary supplementation of creatine monohydrate reduces the human fMRI BOLD signal. Neurosci Lett, 479(3), 201-205. https://doi.org/10.1016/j.neulet.2010.05.054
Harris, R. C., Söderlund, K., & Hultman, E. (1992). Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci (Lond), 83(3), 367-374. https://doi.org/10.1042/cs0830367
Horn, M., Frantz, S., Remkes, H., Laser, A., Urban, B., Mettenleiter, A., Schnackerz, K., & Neubauer, S. (1998). Effects of chronic dietary creatine feeding on cardiac energy metabolism and on creatine content in heart, skeletal muscle, brain, liver and kidney. J Mol Cell Cardiol, 30(2), 277-284. https://doi.org/10.1006/jmcc.1997.0590
Hu, X., & Yacoub, E. (2012). The story of the initial dip in fMRI. Neuroimage, 62(2), 1103-1108. https://doi.org/10.1016/j.neuroimage.2012.03.005
Hultman, E., Söderlund, K., Timmons, J. A., Cederblad, G., & Greenhaff, P. L. (1996). Muscle creatine loading in men. J Appl Physiol (1985), 81(1), 232-237. https://doi.org/10.1152/jappl.1996.81.1.232
J, V. A. N. C., Roelands, B., Pluym, B., Tassignon, B., Verschueren, J. O., K, D. E. P., & Meeusen, R. (2020). Can Creatine Combat the Mental Fatigue-associated Decrease in Visuomotor Skills? Med Sci Sports Exerc, 52(1), 120-130. https://doi.org/10.1249/mss.0000000000002122
Jia, W., & Zhu, J. (2023). Molecular Mechanism of ε-Polylysine Treatment of Animal-Derived Foods: Glycine Amidinotransferase Activity Implicates Upregulation of l-Arginine and Creatine. J Agric Food Chem, 71(41), 15106-15120. https://doi.org/10.1021/acs.jafc.3c04033
Kaptsan, A., Odessky, A., Osher, Y., & Levine, J. (2007). Lack of efficacy of 5 grams daily of creatine in schizophrenia: a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry, 68(6), 881-884. https://doi.org/10.4088/jcp.v68n0609
Kious, B. M., Sabic, H., Sung, Y. H., Kondo, D. G., & Renshaw, P. (2017). An Open-Label Pilot Study of Combined Augmentation With Creatine Monohydrate and 5-Hydroxytryptophan for Selective Serotonin Reuptake Inhibitor- or Serotonin-Norepinephrine Reuptake Inhibitor-Resistant Depression in Adult Women. J Clin Psychopharmacol, 37(5), 578-583. https://doi.org/10.1097/jcp.0000000000000754
Kreider, R. B., Kalman, D. S., Antonio, J., Ziegenfuss, T. N., Wildman, R., Collins, R., Candow, D. G., Kleiner, S. M., Almada, A. L., & Lopez, H. L. (2017). International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. J Int Soc Sports Nutr, 14, 18. https://doi.org/10.1186/s12970-017-0173-z
Kurosawa, Y., Hamaoka, T., Katsumura, T., Kuwamori, M., Kimura, N., Sako, T., & Chance, B. (2003). Creatine supplementation enhances anaerobic ATP synthesis during a single 10 sec maximal handgrip exercise. Mol Cell Biochem, 244(1-2), 105-112.
Ling, J., Kritikos, M., & Tiplady, B. (2009). Cognitive effects of creatine ethyl ester supplementation. Behav Pharmacol, 20(8), 673-679. https://doi.org/10.1097/FBP.0b013e3283323c2a
Livingston, G., Huntley, J., Liu, K. Y., Costafreda, S. G., Selbæk, G., Alladi, S., Ames, D., Banerjee, S., Burns, A., Brayne, C., Fox, N. C., Ferri, C. P., Gitlin, L. N., Howard, R., Kales, H. C., Kivimäki, M., Larson, E. B., Nakasujja, N., Rockwood, K., . . . Mukadam, N. (2024). Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. Lancet, 404(10452), 572-628. https://doi.org/10.1016/s0140-6736(24)01296-0
Lygate, C. A. (2024). Maintaining energy provision in the heart: the creatine kinase system in ischaemia-reperfusion injury and chronic heart failure. Clin Sci (Lond), 138(8), 491-514. https://doi.org/10.1042/cs20230616
McGrath, J. J., Al-Hamzawi, A., Alonso, J., Altwaijri, Y., Andrade, L. H., Bromet, E. J., Bruffaerts, R., de Almeida, J. M. C., Chardoul, S., Chiu, W. T., Degenhardt, L., Demler, O. V., Ferry, F., Gureje, O., Haro, J. M., Karam, E. G., Karam, G., Khaled, S. M., Kovess-Masfety, V., . . . Kessler, R. C. (2023). Age of onset and cumulative risk of mental disorders: a cross-national analysis of population surveys from 29 countries. Lancet Psychiatry, 10(9), 668-681. https://doi.org/10.1016/s2215-0366(23)00193-1
McKenna, M. J., Morton, J., Selig, S. E., & Snow, R. J. (1999). Creatine supplementation increases muscle total creatine but not maximal intermittent exercise performance. J Appl Physiol (1985), 87(6), 2244-2252. https://doi.org/10.1152/jappl.1999.87.6.2244
McMorris, T., Mielcarz, G., Harris, R. C., Swain, J. P., & Howard, A. (2007). Creatine supplementation and cognitive performance in elderly individuals. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn, 14(5), 517-528. https://doi.org/10.1080/13825580600788100
Merege-Filho, C. A., Otaduy, M. C., de Sá-Pinto, A. L., de Oliveira, M. O., de Souza Gonçalves, L., Hayashi, A. P., Roschel, H., Pereira, R. M., Silva, C. A., Brucki, S. M., da Costa Leite, C., & Gualano, B. (2017). Does brain creatine content rely on exogenous creatine in healthy youth? A proof-of-principle study. Appl Physiol Nutr Metab, 42(2), 128-134. https://doi.org/10.1139/apnm-2016-0406
MohanKumar, S. M. J., Murugan, A., Palaniyappan, A., & MohanKumar, P. S. (2023). Role of cytokines and reactive oxygen species in brain aging. Mech Ageing Dev, 214, 111855. https://doi.org/10.1016/j.mad.2023.111855
Moreira-Velasco, J. E., Contreras-Alvarado, M. F., Rammal, H., Rivas, D., & Duque, G. (2025). Beyond Calcium and Vitamin D: Exploring Creatine, β-Hydroxy-β-methylbutyrate, Prebiotics and Probiotics in Osteosarcopenia. Nutrients, 17(14), 2332. https://doi.org/https://doi.org/10.3390/nu17142332
Moriarty, T., Bourbeau, K., Dorman, K., Runyon, L., Glaser, N., Brandt, J., Hoodjer, M., Forbes, S. C., & Candow, D. G. (2023). Dose-Response of Creatine Supplementation on Cognitive Function in Healthy Young Adults. Brain Sci, 13(9). https://doi.org/10.3390/brainsci13091276
Ostojic, S. M., Korovljev, D., & Stajer, V. (2021). Dietary creatine and cognitive function in U.S. adults aged 60 years and over. Aging Clin Exp Res, 33(12), 3269-3274. https://doi.org/10.1007/s40520-021-01857-4
Ostojic, S. M., Ostojic, J., Drid, P., Vranes, M., & Jovanov, P. (2017). Dietary guanidinoacetic acid increases brain creatine levels in healthy men. Nutrition, 33, 149-156. https://doi.org/10.1016/j.nut.2016.06.001
Paddon-Jones, D., Børsheim, E., & Wolfe, R. R. (2004). Potential ergogenic effects of arginine and creatine supplementation. J Nutr, 134(10 Suppl), 2888S-2894S; discussion 2895S. https://doi.org/10.1093/jn/134.10.2888s
Prass, K., Royl, G., Lindauer, U., Freyer, D., Megow, D., Dirnagl, U., Stöckler-Ipsiroglu, G., Wallimann, T., & Priller, J. (2007). Improved reperfusion and neuroprotection by creatine in a mouse model of stroke. J Cereb Blood Flow Metab, 27(3), 452-459. https://doi.org/10.1038/sj.jcbfm.9600351
Rabchevsky, A. G., Sullivan, P. G., Fugaccia, I., & Scheff, S. W. (2003). Creatine diet supplement for spinal cord injury: influences on functional recovery and tissue sparing in rats. J Neurotrauma, 20(7), 659-669. https://doi.org/10.1089/089771503322144572
Rae, C., Digney, A. L., McEwan, S. R., & Bates, T. C. (2003). Oral creatine monohydrate supplementation improves brain performance: a double-blind, placebo-controlled, cross-over trial. Proc Biol Sci, 270(1529), 2147-2150. https://doi.org/10.1098/rspb.2003.2492
Roschel, H., Gualano, B., Ostojic, S. M., & Rawson, E. S. (2021). Creatine Supplementation and Brain Health. Nutrients, 13(2). https://doi.org/10.3390/nu13020586
Saccaro, L. F., Tassone, M., Tozzi, F., & Rutigliano, G. (2024). Proton magnetic resonance spectroscopy of N-acetyl aspartate in first depressive episode and chronic major depressive disorder: A systematic review and meta-analysis. J Affect Disord, 355, 265-282. https://doi.org/10.1016/j.jad.2024.03.150
Sahlin, K., & Harris, R. C. (2011). The creatine kinase reaction: a simple reaction with functional complexity. Amino Acids, 40(5), 1363-1367. https://doi.org/10.1007/s00726-011-0856-8
Sandkühler, J. F., Kersting, X., Faust, A., Königs, E. K., Altman, G., Ettinger, U., Lux, S., Philipsen, A., Müller, H., & Brauner, J. (2023). The effects of creatine supplementation on cognitive performance-a randomised controlled study. BMC Med, 21(1), 440. https://doi.org/10.1186/s12916-023-03146-5
Seper, V., Korovljev, D., Todorovic, N., Stajer, V., Ostojic, J., Nesic, N., & Ostojic, S. M. (2021). Guanidinoacetate-Creatine Supplementation Improves Functional Performance and Muscle and Brain Bioenergetics in the Elderly: A Pilot Study. Ann Nutr Metab, 77(4), 244-247. https://doi.org/10.1159/000518499
Smith, S. A., Montain, S. J., Matott, R. P., Zientara, G. P., Jolesz, F. A., & Fielding, R. A. (1999). Effects of creatine supplementation on the energy cost of muscle contraction: a 31P-MRS study. J Appl Physiol (1985), 87(1), 116-123. https://doi.org/10.1152/jappl.1999.87.1.116
Stout, J., Eckerson, J., Ebersole, K., Moore, G., Perry, S., Housh, T., Bull, A., Cramer, J., & Batheja, A. (2000). Effect of creatine loading on neuromuscular fatigue threshold. J Appl Physiol (1985), 88(1), 109-112. https://doi.org/10.1152/jappl.2000.88.1.109
Sullivan, P. G., Geiger, J. D., Mattson, M. P., & Scheff, S. W. (2000). Dietary supplement creatine protects against traumatic brain injury. Ann Neurol, 48(5), 723-729.
Tachikawa, M., & Hosoya, K. (2011). Transport characteristics of guanidino compounds at the blood-brain barrier and blood-cerebrospinal fluid barrier: relevance to neural disorders. Fluids Barriers CNS, 8(1), 13. https://doi.org/10.1186/2045-8118-8-13
Toniolo, R. A., Silva, M., Fernandes, F. B. F., Amaral, J., Dias, R. D. S., & Lafer, B. (2018). A randomized, double-blind, placebo-controlled, proof-of-concept trial of creatine monohydrate as adjunctive treatment for bipolar depression. J Neural Transm (Vienna), 125(2), 247-257. https://doi.org/10.1007/s00702-017-1817-5
van den Heuvel, M. P., & Sporns, O. (2011). Rich-club organization of the human connectome. J Neurosci, 31(44), 15775-15786. https://doi.org/10.1523/jneurosci.3539-11.2011
Wyss, M., & Kaddurah-Daouk, R. (2000). Creatine and creatinine metabolism. Physiol Rev, 80(3), 1107-1213. https://doi.org/10.1152/physrev.2000.80.3.1107
Yazigi Solis, M., de Salles Painelli, V., Giannini Artioli, G., Roschel, H., Concepción Otaduy, M., & Gualano, B. (2014). Brain creatine depletion in vegetarians? A cross-sectional ¹H-magnetic resonance spectroscopy (¹H-MRS) study. Br J Nutr, 111(7), 1272-1274. https://doi.org/10.1017/s0007114513003802
Yoon, S., Kim, J. E., Hwang, J., Kim, T. S., Kang, H. J., Namgung, E., Ban, S., Oh, S., Yang, J., Renshaw, P. F., & Lyoo, I. K. (2016). Effects of Creatine Monohydrate Augmentation on Brain Metabolic and Network Outcome Measures in Women With Major Depressive Disorder. Biol Psychiatry, 80(6), 439-447. https://doi.org/10.1016/j.biopsych.2015.11.027
Zhang, Y., Chen, H., Li, R., Sterling, K., & Song, W. (2023). Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future. Signal Transduct Target Ther, 8(1), 248. https://doi.org/10.1038/s41392-023-01484-7
Zhu, S., Li, M., Figueroa, B. E., Liu, A., Stavrovskaya, I. G., Pasinelli, P., Beal, M. F., Brown, R. H., Jr., Kristal, B. S., Ferrante, R. J., & Friedlander, R. M. (2004). Prophylactic creatine administration mediates neuroprotection in cerebral ischemia in mice. J Neurosci, 24(26), 5909-5912. https://doi.org/10.1523/jneurosci.1278-04.2004
Views:
159
Downloads:
168
Copyright (c) 2025 Alicja Bury, Patryk Biesaga, Konrad Kotte, Olaf Jadanowski, Kamil Łebek, Weronika Sobota, Przemysław Piskorz, Daria Litworska-Sójka, Bartosz Komsta, Julia Lipiec

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.