FOOD, MICROBES, AND THE MIND: INTERVENTIONS AND TECH-FOR-HEALTH IMPLICATIONS

Keywords: Gut–Brain Axis, Microbiome, Short-Chain Fatty Acids, Neuroinflammation, Probiotics, Precision Nutrition

Abstract

Research objectives: To synthesise recent evidence on microbiome-brain relationships across Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, autism spectrum disorder, depression and schizophrenia; to summarise therapeutic strategies (diet, probiotics/prebiotics, psychobiotics, faecal microbiota transplantation) and biological mechanisms; and to outline translational considerations relevant to technology and society.

Methods: Structured narrative review with a PRISMA-style workflow.

Sources: PubMed/MEDLINE and Web of Science (Core Collection), plus handsearch/citation chasing (English/Polish; 1 Jan 2013–31 Mar 2025). Ten authors performed duplicate screening and data charting. Heterogeneity precluded meta-analysis. Included n=21 studies after databases identified n=1,500 records, duplicates n=540, screened n=960, and full texts assessed n=252 (databases) and n=48 from other sources; the reference list also cites background/methodological works not counted in PRISMA.

Key findings: Across conditions, a consistent signal is loss of short-chain-fatty-acid (SCFA)–producing taxa, increased intestinal permeability and immune activation. High-fibre/polyphenol diets and multi-strain probiotics/prebiotics show the

clearest-though modest-improvements in inflammatory markers and selected mood/quality-of-life outcomes; cognitive effects are mixed. Psychobiotics show preliminary benefits; faecal microbiota transplantation remains experimental in neurology. Mechanistic strands include SCFAs, tryptophan/kynurenine metabolism, vagal signalling and HPA-axis modulation.

Conclusions: The gut microbiome is a modifiable contributor to brain health. Low-risk dietary optimisation is warranted, and probiotic use should be strain-specific. Priorities include adequately powered, preregistered trials with harmonised microbiome pipelines and mechanistic endpoints, plus evaluation of precision-nutrition and data-driven decision support under robust privacy governance.

References

Agus, A., Planchais, J., & Sokol, H. (2018). Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host & Microbe, 23(6), 716–724. https://doi.org/10.1016/j.chom.2018.05.003

Alli, S. R., Gorbovskaya, I., Liu, J. C. W., et al. (2022). The gut microbiome in depression and potential benefit of prebiotics, probiotics and synbiotics:

A systematic review of clinical trials and observational studies. International Journal of Molecular Sciences, 23(9), 4494. https://doi.org/10.3390/ijms23094494

Cadilhac, D. A., & Mahal, A. (2024). Costs of neurological disorders. Neuroepidemiology, 58(6), 409–411. https://doi.org/10.1159/000539370

Camacho, M., Macleod, A. D., Maple-Grødem, J., et al. (2021). Early constipation predicts faster dementia onset in Parkinson’s disease. NPJ Parkinson’s Disease, 7(1), 45. https://doi.org/10.1038/s41531-021-00191-w

Cammarota, G., Ianiro, G., Tilg, H., Rajilić-Stojanović, M., Kump, P., Satokari, R., … Malfertheiner, P. (2017). European consensus conference on faecal microbiota transplantation in clinical practice. Gut, 66(4), 569–580. https://doi.org/10.1136/gutjnl-2016-313017

Chandra, S., Sisodia, S. S., & Vassar, R. (2023). The gut microbiome in Alzheimer’s disease: What we know and what remains to be explored. Molecular Neurodegeneration, 18(1), 9. https://doi.org/10.1186/s13024-023-00595-7

Choi, J. G., Kim, N., Ju, I. G., et al. (2018). Oral administration of Proteus mirabilis damages dopaminergic neurons and motor functions in mice. Scientific Reports, 8(1), 1275. https://doi.org/10.1038/s41598-018-19646-x

Cryan, J. F., O’Riordan, K. J., Cowan, C. S. M., et al. (2019). The microbiota–gut–brain axis. Physiological Reviews, 99(4), 1877–2013. https://doi.org/10.1152/physrev.00018.2018

David, L. A., Maurice, C. F., Carmody, R. N., et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–563. https://doi.org/10.1038/nature12820

Dinan, T. G., & Cryan, J. F. (2017). Brain–gut–microbiota axis and mental health. Psychosomatic Medicine, 79(8), 920–926. https://doi.org/10.1097/PSY.0000000000000519

Duan, W. X., Wang, F., Liu, J. Y., et al. (2024). Relationship between short-chain fatty acids and Parkinson’s disease: A review from pathology to clinic. Neuroscience Bulletin, 40(4), 500–516. https://doi.org/10.1007/s12264-023-01123-9

U.S. Food and Drug Administration. (2019, June 13). Fecal microbiota for transplantation: Safety communication—Risk of serious adverse reactions due to transmission of multidrug-resistant organisms. https://www.fda.gov/safety/medical-product-safety-information/fecal-microbiota-transplantation-safety-communication-risk-serious-adverse-reactions-due

U.S. Food and Drug Administration. (2020, March 12). Fecal microbiota for transplantation: Safety alert—Risk of serious adverse events likely due to transmission of pathogenic organisms. https://www.fda.gov/safety/medical-product-safety-information/fecal-microbiota-transplantation-safety-alert-risk-serious-adverse-events-likely-due-transmission

Frej-Mądrzak, M., Gębarowska, J., Choroszy-Król, I., i wsp. (2021). Wpływ mikrobioty jelitowej na występowanie zaburzeń psychicznych oraz chorób neurodegeneracyjnych. Postępy Higieny i Medycyny Doświadczalnej, 75, 620–633. https://doi.org/10.2478/ahem-2021-0021

Fung, T. C., Olson, C. A., & Hsiao, E. Y. (2017). Interactions between the microbiota, immune and nervous systems in health and disease. Nature Neuroscience, 20(2), 145–155. https://doi.org/10.1038/nn.4476

Góralczyk-Bińkowska, A., Szmajda-Krygier, D., & Kozłowska, E. (2022). The microbiota–gut–brain axis in psychiatric disorders. International Journal of Molecular Sciences, 23(19), 11245. https://doi.org/10.3390/ijms231911245

Hsiao, E. Y., McBride, S. W., Hsien, S., et al. (2013). Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 155(7), 1451–1463. https://doi.org/10.1016/j.cell.2013.11.024

Jangi, S., Gandhi, R., Cox, L. M., et al. (2016). Alterations of the human gut microbiome in multiple sclerosis. Nature Communications, 7, 12015. https://doi.org/10.1038/ncomms12015

Jiang, X., Zheng, Y., Sun, H., et al. (2025). Fecal microbiota transplantation improves cognitive function of a mouse model of Alzheimer’s disease. CNS Neuroscience & Therapeutics, 31(2), e70259. https://doi.org/10.1111/cns.70259

Kelly, J. R., Borre, Y., O’Brien, C. E., et al. (2016). Transferring the blues: Depression-associated gut microbiota induces neurobehavioral changes in the rat. Journal of Psychiatric Research, 82, 109–118. https://doi.org/10.1016/j.jpsychires.2016.07.019

Kochalska, K., Oakden, W., Słowik, T., et al. (2020). Dietary supplementation with Lactobacillus rhamnosus JB-1 restores brain neurochemical balance and mitigates the progression of mood disorder in a rat model of chronic unpredictable mild stress. Nutrition Research, 82, 44–57. https://doi.org/10.1016/j.nutres.2020.06.019

Kwon, D., Zhang, K., Paul, K. C., et al. (2024). Diet and the gut microbiome in patients with Parkinson’s disease. NPJ Parkinson’s Disease, 10(1), 89. https://doi.org/10.1038/s41531-024-00681-7

Li, S., Zhuo, M., Huang, X., et al. (2020). Altered gut microbiota associated with symptom severity in schizophrenia. PeerJ, 8, e9574. https://doi.org/10.7717/peerj.9574

Liu, X., Cruz Rivera, S., Moher, D., Calvert, M. J., Denniston, A. K., & SPIRIT-AI and CONSORT-AI Working Group. (2020). CONSORT-AI extension: Reporting guidelines for clinical trials evaluating artificial-intelligence interventions. Nature Medicine, 26, 1364–1374. https://doi.org/10.1038/s41591-020-1034-x

Liu, R. T., Lieberman, A. F., Musci, R. J., et al. (2022). Psychobiotics for mental health: A systematic review and meta-analysis. Critical Reviews in Food Science and Nutrition, 62(3), 630–652. https://doi.org/10.1080/10408398.2020.1790920

Li, Z., Lai, J., Zhang, P., et al. (2022). Multi-omics analyses of serum metabolome, gut microbiome and brain function reveal dysregulated microbiota–gut–brain axis in bipolar depression. Molecular Psychiatry, 27(10), 4123–4135. https://doi.org/10.1038/s41380-022-01569-9

Lorenc, J., Bramorska, A., Zarzycka, W., et al. (2020). Wpływ mikrobiomu jelitowego na mózg i psychikę. Kosmos, 69(1), 45–58. https://doi.org/10.36921/kos.2020_263

Maier, L., Pruteanu, M., Koepsell, S., et al. (2018). Extensive impact of non-antibiotic drugs on human gut bacteria. Nature, 555(7698), 623–628. https://doi.org/10.1038/nature25979

Mirzayi, C., Renson, A., Zohra, F., Elsafoury, S., Geistlinger, L., Kasselman, L. J., … The STORMS Consortium. (2021). Reporting guidelines for human microbiome research: The STORMS checklist. Nature Medicine, 27(11), 1885–1892. https://doi.org/10.1038/s41591-021-01552-x

Modesto-Lowe, V., Chaplin, M., & Sgambato, D. (2023). Major depressive disorder and the gut microbiome: What is the link? General Psychiatry, 36(1), e100973. https://doi.org/10.1136/gpsych-2022-100973

Nassar, S. T., Tasha, T., Desai, A., et al. (2022). Fecal microbiota transplantation in the treatment of Alzheimer’s disease: A systematic review. Cureus, 14(10), e29968. https://doi.org/10.7759/cureus.29968

Nguyen, T. T., Kosciolek, T., Eyler, L., et al. (2019). Fecal microbiota signatures of metabolic risk in schizophrenia. Molecular Psychiatry, 24(3), 1–9. https://doi.org/10.1038/s41380-019-0536-x

Otaru, N., Ye, K., Mujezinovic, D., et al. (2021). GABA production by human intestinal Bacteroides spp.: Prevalence, regulation, and role in acid stress tolerance. Frontiers in Microbiology, 12, 656895. https://doi.org/10.3389/fmicb.2021.656895

Park, S. H., Lee, J. H., Shin, J., et al. (2021). Cognitive function improvement after fecal microbiota transplantation in an Alzheimer’s dementia patient: A case report. Current Medical Research and Opinion, 37(10), 1739–1744. https://doi.org/10.1080/03007995.2021.1957807

Peery, A. F., Kelly, C. R., et al. (2024). AGA clinical practice guideline on fecal microbiota–based therapies for gastrointestinal disease. Gastroenterology. Advance online publication. https://www.gastrojournal.org/

Porcari, S., et al. (2024). International consensus statement on microbiome testing in clinical practice. The Lancet Gastroenterology & Hepatology. https://doi.org/10.1016/S2468-1253(24)00311-X

Rivera, S. C., Liu, X., Chan, A.-W., Denniston, A. K., Calvert, M. J., & SPIRIT-AI and CONSORT-AI Working Group. (2020). Guidelines for clinical trial protocols for interventions involving artificial intelligence: The SPIRIT-AI extension. BMJ, 370, m3210. https://doi.org/10.1136/bmj.m3210

Salim, S., Ahmad, F., Banu, A., et al. (2023). Gut microbiome and Parkinson’s disease: Perspective on pathogenesis and treatment. Journal of Advanced Research, 50, 83–105. https://doi.org/10.1016/j.jare.2022.10.013

Sarkar, A., Lehto, S. M., & Harty, S., et al. (2016). Psychobiotics and the manipulation of bacteria–gut–brain signals. Trends in Neurosciences, 39(11), 763–781. https://doi.org/10.1016/j.tins.2016.09.002

National Institute of Standards and Technology. (2024). Evaluating the analytical performance of direct-to-consumer gut microbiome testing services using a standardized NIST human fecal material. https://www.nist.gov/publications/evaluating-analytical-performance-direct-consumer-gut-microbiome-testing-services

Strandwitz, P. (2018). Neurotransmitter modulation by the gut microbiota. Brain Research, 1693, 128–133. https://doi.org/10.1016/j.brainres.2018.03.015

Szklany, K., Wopereis, H., de Waard, C., et al. (2020). Supplementation of dietary non-digestible oligosaccharides from birth onwards improves social and reduces anxiety-like behaviour in male BALB/c mice. Nutritional Neuroscience, 23(11), 896–910. https://doi.org/10.1080/1028415X.2019.1576362

Sánchez-Villegas, A., Galbete, C., Martinez-González, M. A., et al. (2013). Effect of a Mediterranean diet on the incidence of depression: Results from the PREDIMED trial. BMC Medicine, 11, 208. https://doi.org/10.1186/1741-7015-11-208

Tankou, S. K., Regev, K., Healy, B. C., et al. (2018). Disease-modifying therapies alter gut microbial composition in multiple sclerosis. Annals of Neurology, 83(6), 797–811. https://doi.org/10.1002/ana.25244

Vascellari, S., Palmas, V., Melis, M., et al. (2020). Gut microbiota and metabolome alterations associated with Parkinson’s disease. mSystems, 5(5), e00561-20. https://doi.org/10.1128/mSystems.00561-20

Vogt, N. M., Kerby, R. L., Dill-McFarland, K. A., et al. (2017). Gut microbiome alterations in Alzheimer’s disease. Scientific Reports, 7, 13537. https://doi.org/10.1038/s41598-017-13601-y

Vrijsen, S., Houdou, M., Cascalho, A., et al. (2023). Polyamines in Parkinson’s disease: Balancing between neurotoxicity and neuroprotection. Annual Review of Biochemistry, 92, 435–464. https://doi.org/10.1146/annurev-biochem-071322-021330

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., … Mons, B. (2016). The FAIR guiding principles for scientific data management and stewardship. Scientific Data, 3, 160018. https://doi.org/10.1038/sdata.2016.18

Zajac, D. J., Shaw, B. C., Braun, D. J., et al. (2022). Exogenous short chain fatty acid effects in APP/PS1 mice. Frontiers in Neuroscience, 16, 873549. https://doi.org/10.3389/fnins.2022.873549

Zeng, B., Li, G, Yuan, J., et al. (2018). The microbial community of the human gut is altered in schizophrenia. Scientific Reports, 8(1), 15775. https://doi.org/10.1038/s41598-018-34035-0

Zhao, Z., Ning, J., Bao, X.-Q., et al. (2021). Fecal microbiota transplantation protects rotenone-induced Parkinson’s disease mice via suppressing inflammation mediated by the lipopolysaccharide–TLR4 signalling pathway through the microbiota–gut–brain axis. Microbiome, 9(1), 226. https://doi.org/10.1186/s40168-021-01107-9

Views:

2

Downloads:

0

Published
2025-09-30
Citations
How to Cite
Wojciech Pabis, Patryk Biesaga, Konrad Kotte, Olaf Jadanowski, Kamil Łebek, Weronika Sobota, Przemysław Piskorz, Daria Litworska-Sójka, Bartosz Komsta, & Julia Lipiec. (2025). FOOD, MICROBES, AND THE MIND: INTERVENTIONS AND TECH-FOR-HEALTH IMPLICATIONS. International Journal of Innovative Technologies in Social Science, 5(3(47). https://doi.org/10.31435/ijitss.3(47).2025.3841

Most read articles by the same author(s)