FOOD, MICROBES, AND THE MIND: INTERVENTIONS AND TECH-FOR-HEALTH IMPLICATIONS
Abstract
Research objectives: To synthesise recent evidence on microbiome-brain relationships across Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, autism spectrum disorder, depression and schizophrenia; to summarise therapeutic strategies (diet, probiotics/prebiotics, psychobiotics, faecal microbiota transplantation) and biological mechanisms; and to outline translational considerations relevant to technology and society.
Methods: Structured narrative review with a PRISMA-style workflow.
Sources: PubMed/MEDLINE and Web of Science (Core Collection), plus handsearch/citation chasing (English/Polish; 1 Jan 2013–31 Mar 2025). Ten authors performed duplicate screening and data charting. Heterogeneity precluded meta-analysis. Included n=21 studies after databases identified n=1,500 records, duplicates n=540, screened n=960, and full texts assessed n=252 (databases) and n=48 from other sources; the reference list also cites background/methodological works not counted in PRISMA.
Key findings: Across conditions, a consistent signal is loss of short-chain-fatty-acid (SCFA)–producing taxa, increased intestinal permeability and immune activation. High-fibre/polyphenol diets and multi-strain probiotics/prebiotics show the
clearest-though modest-improvements in inflammatory markers and selected mood/quality-of-life outcomes; cognitive effects are mixed. Psychobiotics show preliminary benefits; faecal microbiota transplantation remains experimental in neurology. Mechanistic strands include SCFAs, tryptophan/kynurenine metabolism, vagal signalling and HPA-axis modulation.
Conclusions: The gut microbiome is a modifiable contributor to brain health. Low-risk dietary optimisation is warranted, and probiotic use should be strain-specific. Priorities include adequately powered, preregistered trials with harmonised microbiome pipelines and mechanistic endpoints, plus evaluation of precision-nutrition and data-driven decision support under robust privacy governance.
References
Agus, A., Planchais, J., & Sokol, H. (2018). Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host & Microbe, 23(6), 716–724. https://doi.org/10.1016/j.chom.2018.05.003
Alli, S. R., Gorbovskaya, I., Liu, J. C. W., et al. (2022). The gut microbiome in depression and potential benefit of prebiotics, probiotics and synbiotics:
A systematic review of clinical trials and observational studies. International Journal of Molecular Sciences, 23(9), 4494. https://doi.org/10.3390/ijms23094494
Cadilhac, D. A., & Mahal, A. (2024). Costs of neurological disorders. Neuroepidemiology, 58(6), 409–411. https://doi.org/10.1159/000539370
Camacho, M., Macleod, A. D., Maple-Grødem, J., et al. (2021). Early constipation predicts faster dementia onset in Parkinson’s disease. NPJ Parkinson’s Disease, 7(1), 45. https://doi.org/10.1038/s41531-021-00191-w
Cammarota, G., Ianiro, G., Tilg, H., Rajilić-Stojanović, M., Kump, P., Satokari, R., … Malfertheiner, P. (2017). European consensus conference on faecal microbiota transplantation in clinical practice. Gut, 66(4), 569–580. https://doi.org/10.1136/gutjnl-2016-313017
Chandra, S., Sisodia, S. S., & Vassar, R. (2023). The gut microbiome in Alzheimer’s disease: What we know and what remains to be explored. Molecular Neurodegeneration, 18(1), 9. https://doi.org/10.1186/s13024-023-00595-7
Choi, J. G., Kim, N., Ju, I. G., et al. (2018). Oral administration of Proteus mirabilis damages dopaminergic neurons and motor functions in mice. Scientific Reports, 8(1), 1275. https://doi.org/10.1038/s41598-018-19646-x
Cryan, J. F., O’Riordan, K. J., Cowan, C. S. M., et al. (2019). The microbiota–gut–brain axis. Physiological Reviews, 99(4), 1877–2013. https://doi.org/10.1152/physrev.00018.2018
David, L. A., Maurice, C. F., Carmody, R. N., et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–563. https://doi.org/10.1038/nature12820
Dinan, T. G., & Cryan, J. F. (2017). Brain–gut–microbiota axis and mental health. Psychosomatic Medicine, 79(8), 920–926. https://doi.org/10.1097/PSY.0000000000000519
Duan, W. X., Wang, F., Liu, J. Y., et al. (2024). Relationship between short-chain fatty acids and Parkinson’s disease: A review from pathology to clinic. Neuroscience Bulletin, 40(4), 500–516. https://doi.org/10.1007/s12264-023-01123-9
U.S. Food and Drug Administration. (2019, June 13). Fecal microbiota for transplantation: Safety communication—Risk of serious adverse reactions due to transmission of multidrug-resistant organisms. https://www.fda.gov/safety/medical-product-safety-information/fecal-microbiota-transplantation-safety-communication-risk-serious-adverse-reactions-due
U.S. Food and Drug Administration. (2020, March 12). Fecal microbiota for transplantation: Safety alert—Risk of serious adverse events likely due to transmission of pathogenic organisms. https://www.fda.gov/safety/medical-product-safety-information/fecal-microbiota-transplantation-safety-alert-risk-serious-adverse-events-likely-due-transmission
Frej-Mądrzak, M., Gębarowska, J., Choroszy-Król, I., i wsp. (2021). Wpływ mikrobioty jelitowej na występowanie zaburzeń psychicznych oraz chorób neurodegeneracyjnych. Postępy Higieny i Medycyny Doświadczalnej, 75, 620–633. https://doi.org/10.2478/ahem-2021-0021
Fung, T. C., Olson, C. A., & Hsiao, E. Y. (2017). Interactions between the microbiota, immune and nervous systems in health and disease. Nature Neuroscience, 20(2), 145–155. https://doi.org/10.1038/nn.4476
Góralczyk-Bińkowska, A., Szmajda-Krygier, D., & Kozłowska, E. (2022). The microbiota–gut–brain axis in psychiatric disorders. International Journal of Molecular Sciences, 23(19), 11245. https://doi.org/10.3390/ijms231911245
Hsiao, E. Y., McBride, S. W., Hsien, S., et al. (2013). Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 155(7), 1451–1463. https://doi.org/10.1016/j.cell.2013.11.024
Jangi, S., Gandhi, R., Cox, L. M., et al. (2016). Alterations of the human gut microbiome in multiple sclerosis. Nature Communications, 7, 12015. https://doi.org/10.1038/ncomms12015
Jiang, X., Zheng, Y., Sun, H., et al. (2025). Fecal microbiota transplantation improves cognitive function of a mouse model of Alzheimer’s disease. CNS Neuroscience & Therapeutics, 31(2), e70259. https://doi.org/10.1111/cns.70259
Kelly, J. R., Borre, Y., O’Brien, C. E., et al. (2016). Transferring the blues: Depression-associated gut microbiota induces neurobehavioral changes in the rat. Journal of Psychiatric Research, 82, 109–118. https://doi.org/10.1016/j.jpsychires.2016.07.019
Kochalska, K., Oakden, W., Słowik, T., et al. (2020). Dietary supplementation with Lactobacillus rhamnosus JB-1 restores brain neurochemical balance and mitigates the progression of mood disorder in a rat model of chronic unpredictable mild stress. Nutrition Research, 82, 44–57. https://doi.org/10.1016/j.nutres.2020.06.019
Kwon, D., Zhang, K., Paul, K. C., et al. (2024). Diet and the gut microbiome in patients with Parkinson’s disease. NPJ Parkinson’s Disease, 10(1), 89. https://doi.org/10.1038/s41531-024-00681-7
Li, S., Zhuo, M., Huang, X., et al. (2020). Altered gut microbiota associated with symptom severity in schizophrenia. PeerJ, 8, e9574. https://doi.org/10.7717/peerj.9574
Liu, X., Cruz Rivera, S., Moher, D., Calvert, M. J., Denniston, A. K., & SPIRIT-AI and CONSORT-AI Working Group. (2020). CONSORT-AI extension: Reporting guidelines for clinical trials evaluating artificial-intelligence interventions. Nature Medicine, 26, 1364–1374. https://doi.org/10.1038/s41591-020-1034-x
Liu, R. T., Lieberman, A. F., Musci, R. J., et al. (2022). Psychobiotics for mental health: A systematic review and meta-analysis. Critical Reviews in Food Science and Nutrition, 62(3), 630–652. https://doi.org/10.1080/10408398.2020.1790920
Li, Z., Lai, J., Zhang, P., et al. (2022). Multi-omics analyses of serum metabolome, gut microbiome and brain function reveal dysregulated microbiota–gut–brain axis in bipolar depression. Molecular Psychiatry, 27(10), 4123–4135. https://doi.org/10.1038/s41380-022-01569-9
Lorenc, J., Bramorska, A., Zarzycka, W., et al. (2020). Wpływ mikrobiomu jelitowego na mózg i psychikę. Kosmos, 69(1), 45–58. https://doi.org/10.36921/kos.2020_263
Maier, L., Pruteanu, M., Koepsell, S., et al. (2018). Extensive impact of non-antibiotic drugs on human gut bacteria. Nature, 555(7698), 623–628. https://doi.org/10.1038/nature25979
Mirzayi, C., Renson, A., Zohra, F., Elsafoury, S., Geistlinger, L., Kasselman, L. J., … The STORMS Consortium. (2021). Reporting guidelines for human microbiome research: The STORMS checklist. Nature Medicine, 27(11), 1885–1892. https://doi.org/10.1038/s41591-021-01552-x
Modesto-Lowe, V., Chaplin, M., & Sgambato, D. (2023). Major depressive disorder and the gut microbiome: What is the link? General Psychiatry, 36(1), e100973. https://doi.org/10.1136/gpsych-2022-100973
Nassar, S. T., Tasha, T., Desai, A., et al. (2022). Fecal microbiota transplantation in the treatment of Alzheimer’s disease: A systematic review. Cureus, 14(10), e29968. https://doi.org/10.7759/cureus.29968
Nguyen, T. T., Kosciolek, T., Eyler, L., et al. (2019). Fecal microbiota signatures of metabolic risk in schizophrenia. Molecular Psychiatry, 24(3), 1–9. https://doi.org/10.1038/s41380-019-0536-x
Otaru, N., Ye, K., Mujezinovic, D., et al. (2021). GABA production by human intestinal Bacteroides spp.: Prevalence, regulation, and role in acid stress tolerance. Frontiers in Microbiology, 12, 656895. https://doi.org/10.3389/fmicb.2021.656895
Park, S. H., Lee, J. H., Shin, J., et al. (2021). Cognitive function improvement after fecal microbiota transplantation in an Alzheimer’s dementia patient: A case report. Current Medical Research and Opinion, 37(10), 1739–1744. https://doi.org/10.1080/03007995.2021.1957807
Peery, A. F., Kelly, C. R., et al. (2024). AGA clinical practice guideline on fecal microbiota–based therapies for gastrointestinal disease. Gastroenterology. Advance online publication. https://www.gastrojournal.org/
Porcari, S., et al. (2024). International consensus statement on microbiome testing in clinical practice. The Lancet Gastroenterology & Hepatology. https://doi.org/10.1016/S2468-1253(24)00311-X
Rivera, S. C., Liu, X., Chan, A.-W., Denniston, A. K., Calvert, M. J., & SPIRIT-AI and CONSORT-AI Working Group. (2020). Guidelines for clinical trial protocols for interventions involving artificial intelligence: The SPIRIT-AI extension. BMJ, 370, m3210. https://doi.org/10.1136/bmj.m3210
Salim, S., Ahmad, F., Banu, A., et al. (2023). Gut microbiome and Parkinson’s disease: Perspective on pathogenesis and treatment. Journal of Advanced Research, 50, 83–105. https://doi.org/10.1016/j.jare.2022.10.013
Sarkar, A., Lehto, S. M., & Harty, S., et al. (2016). Psychobiotics and the manipulation of bacteria–gut–brain signals. Trends in Neurosciences, 39(11), 763–781. https://doi.org/10.1016/j.tins.2016.09.002
National Institute of Standards and Technology. (2024). Evaluating the analytical performance of direct-to-consumer gut microbiome testing services using a standardized NIST human fecal material. https://www.nist.gov/publications/evaluating-analytical-performance-direct-consumer-gut-microbiome-testing-services
Strandwitz, P. (2018). Neurotransmitter modulation by the gut microbiota. Brain Research, 1693, 128–133. https://doi.org/10.1016/j.brainres.2018.03.015
Szklany, K., Wopereis, H., de Waard, C., et al. (2020). Supplementation of dietary non-digestible oligosaccharides from birth onwards improves social and reduces anxiety-like behaviour in male BALB/c mice. Nutritional Neuroscience, 23(11), 896–910. https://doi.org/10.1080/1028415X.2019.1576362
Sánchez-Villegas, A., Galbete, C., Martinez-González, M. A., et al. (2013). Effect of a Mediterranean diet on the incidence of depression: Results from the PREDIMED trial. BMC Medicine, 11, 208. https://doi.org/10.1186/1741-7015-11-208
Tankou, S. K., Regev, K., Healy, B. C., et al. (2018). Disease-modifying therapies alter gut microbial composition in multiple sclerosis. Annals of Neurology, 83(6), 797–811. https://doi.org/10.1002/ana.25244
Vascellari, S., Palmas, V., Melis, M., et al. (2020). Gut microbiota and metabolome alterations associated with Parkinson’s disease. mSystems, 5(5), e00561-20. https://doi.org/10.1128/mSystems.00561-20
Vogt, N. M., Kerby, R. L., Dill-McFarland, K. A., et al. (2017). Gut microbiome alterations in Alzheimer’s disease. Scientific Reports, 7, 13537. https://doi.org/10.1038/s41598-017-13601-y
Vrijsen, S., Houdou, M., Cascalho, A., et al. (2023). Polyamines in Parkinson’s disease: Balancing between neurotoxicity and neuroprotection. Annual Review of Biochemistry, 92, 435–464. https://doi.org/10.1146/annurev-biochem-071322-021330
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., … Mons, B. (2016). The FAIR guiding principles for scientific data management and stewardship. Scientific Data, 3, 160018. https://doi.org/10.1038/sdata.2016.18
Zajac, D. J., Shaw, B. C., Braun, D. J., et al. (2022). Exogenous short chain fatty acid effects in APP/PS1 mice. Frontiers in Neuroscience, 16, 873549. https://doi.org/10.3389/fnins.2022.873549
Zeng, B., Li, G, Yuan, J., et al. (2018). The microbial community of the human gut is altered in schizophrenia. Scientific Reports, 8(1), 15775. https://doi.org/10.1038/s41598-018-34035-0
Zhao, Z., Ning, J., Bao, X.-Q., et al. (2021). Fecal microbiota transplantation protects rotenone-induced Parkinson’s disease mice via suppressing inflammation mediated by the lipopolysaccharide–TLR4 signalling pathway through the microbiota–gut–brain axis. Microbiome, 9(1), 226. https://doi.org/10.1186/s40168-021-01107-9
Views:
2
Downloads:
0
Copyright (c) 2025 Wojciech Pabis, Patryk Biesaga, Konrad Kotte, Olaf Jadanowski, Kamil Łebek, Weronika Sobota, Przemysław Piskorz, Daria Litworska-Sójka, Bartosz Komsta, Julia Lipiec

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.