AUTOIMMUNITY AS A COMPLICATION OF VIRAL INFECTIONS: SIGNIFICANCE FOR THE DEVELOPMENT OF AUTOIMMUNE AND ONCOLOGICAL DISEASES
Abstract
Viral infections play a key role in the initiation of autoimmune processes and the development of virus-associated cancers. This review presents current knowledge on the mechanisms leading to autoimmunity following viral infections, such as molecular mimicry, epitope spreading, activation of the bystander phenomenon, and deregulation of regulatory T cells. Examples of infection-related autoimmune diseases (SLE, multiple sclerosis, Guillain-Barré syndrome, autoimmune thyroiditis) and the impact of COVID-19 as a trigger for new disease entities are also discussed. Particular attention is paid to the role of oncogenic viruses (HPV, HBV, HCV, EBV, HTLV-1) and chronic immunosuppression in the initiation of malignant transformation, as well as the mechanisms of tumor microenvironment formation. The intersection of autoimmunity and immuno-oncology is presented, including the relationship between the occurrence of adverse effects of immunotherapy and treatment efficacy. The importance of biomarkers (ANA, ENA antibodies, cytokine profile) in diagnosis and the challenges in differentiating autoimmunity from early-stage cancers are also discussed. The final section presents therapeutic and preventive strategies, including the role of vaccination, patient monitoring, and immunomodulation. The need for multicenter prospective studies and the development of personalized treatment methods is emphasized. This topic has significant clinical and health implications, particularly in the post-pandemic era, where the incidence of autoimmune disorders and cancers associated with viral infections is increasing.
References
Abdel-Wahab, N., Talathi, S., Lopez-Olivo, M. A., & Suarez-Almazor, M. E. (2018). Risk of developing antiphospholipid antibodies following viral infection: a systematic review and meta-analysis. Lupus, 27(4), 572–583. https://doi.org/10.1177/0961203317731532
Aghamajidi, A., Farhangnia, P., Pashangzadeh, S., Damavandi, A. R., & Jafari, R. (2022). Tumor-promoting myeloid cells in the pathogenesis of human oncoviruses: potential targets for immunotherapy. Cancer Cell International, 22(1), 327. https://doi.org/10.1186/s12935-022-02727-3
An, J., Liu, Y., Wang, Y., Fan, R., Hu, X., Zhang, F., Yang, J., & Chen, J. (2022). The role of intestinal mucosal barrier in autoimmune disease: A potential target. Frontiers in Immunology, 13, 871713. https://doi.org/10.3389/fimmu.2022.871713
Avendaño-Ortiz, J., Redondo-Calvo, F. J., Lozano-Rodríguez, R., Terrón-Arcos, V., Bergón-Gutiérrez, M., Rodríguez-Jiménez, C., Rodríguez, J. F., Del Campo, R., Gómez, L. A., Bejarano-Ramírez, N., Pérez-Ortiz, J. M., & López-Collazo, E. (2023). Thiosulfinate-enriched Allium sativum extract exhibits differential effects between healthy and sepsis patients: The implication of HIF-1α. International Journal of Molecular Sciences, 24(7), 6234. https://doi.org/10.3390/ijms24076234
Balkwill, F., & Mantovani, A. (2001). Inflammation and cancer: back to Virchow? Lancet, 357(9255), 539–545. https://doi.org/10.1016/S0140-6736(00)04046-0
Ball, R. J., Avenell, A., Aucott, L., Hanlon, P., & Vickers, M. A. (2015). Systematic review and meta-analysis of the sero-epidemiological association between Epstein-Barr virus and rheumatoid arthritis. Arthritis Research & Therapy, 17(1), 274. https://doi.org/10.1186/s13075-015-0755-6
Ballerini, C., Amoriello, R., Maghrebi, O., Bellucci, G., Addazio, I., Betti, M., Aprea, M. G., Masciulli, C., Caporali, A., Penati, V., Ballerini, C., De Meo, E., Portaccio, E., Salvetti, M., & Amato, M. P. (2025). Exploring the role of EBV in multiple sclerosis pathogenesis through EBV interactome. Frontiers in Immunology, 16, 1557483. https://doi.org/10.3389/fimmu.2025.1557483
Bautista, J., & Lopez-Cortes, A. (2025). Oncogenic viruses rewire the epigenome in human cancer. Frontiers in Cellular and Infection Microbiology, 15, 1617198. https://doi.org/10.3389/fcimb.2025.1617198
Bednar, K. J., Lee, J. H., & Ort, T. (2022). Tregs in autoimmunity: Insights into intrinsic brake mechanism driving pathogenesis and immune homeostasis. Frontiers in Immunology, 13, 932485. https://doi.org/10.3389/fimmu.2022.932485
Bjornevik, K., Cortese, M., Healy, B. C., Kuhle, J., Mina, M. J., Leng, Y., Elledge, S. J., Niebuhr, D. W., Scher, A. I., Munger, K. L., & Ascherio, A. (2022). Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science (New York, N.Y.), 375(6578), 296–301. https://doi.org/10.1126/science.abj8222
Bjornevik, K., Münz, C., Cohen, J. I., & Ascherio, A. (2023). Epstein-Barr virus as a leading cause of multiple sclerosis: mechanisms and implications. Nature Reviews. Neurology, 19(3), 160–171. https://doi.org/10.1038/s41582-023-00775-5
Borghi, M. O., Beltagy, A., Garrafa, E., Curreli, D., Cecchini, G., Bodio, C., Grossi, C., Blengino, S., Tincani, A., Franceschini, F., Andreoli, L., Lazzaroni, M. G., Piantoni, S., Masneri, S., Crisafulli, F., Brugnoni, D., Muiesan, M. L., Salvetti, M., Parati, G., … Meroni, P. L. (2020). Anti-phospholipid antibodies in COVID-19 are different from those detectable in the anti-phospholipid syndrome. Frontiers in Immunology, 11, 584241. https://doi.org/10.3389/fimmu.2020.584241
Cao-Lormeau, V.-M., Blake, A., Mons, S., Lastère, S., Roche, C., Vanhomwegen, J., Dub, T., Baudouin, L., Teissier, A., Larre, P., Vial, A.-L., Decam, C., Choumet, V., Halstead, S. K., Willison, H. J., Musset, L., Manuguerra, J.-C., Despres, P., Fournier, E., … Ghawché, F. (2016a). Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet, 387(10027), 1531–1539. https://doi.org/10.1016/S0140-6736(16)00562-6
Cao-Lormeau, V.-M., Blake, A., Mons, S., Lastère, S., Roche, C., Vanhomwegen, J., Dub, T., Baudouin, L., Teissier, A., Larre, P., Vial, A.-L., Decam, C., Choumet, V., Halstead, S. K., Willison, H. J., Musset, L., Manuguerra, J.-C., Despres, P., Fournier, E., … Ghawché, F. (2016b). Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet, 387(10027), 1531–1539. https://doi.org/10.1016/S0140-6736(16)00562-6
Chan, L. S., Vanderlugt, C. J., Hashimoto, T., Nishikawa, T., Zone, J. J., Black, M. M., Wojnarowska, F., Stevens, S. R., Chen, M., Fairley, J. A., Woodley, D. T., Miller, S. D., & Gordon, K. B. (1998). Epitope spreading: lessons from autoimmune skin diseases. The Journal of Investigative Dermatology, 110(2), 103–109. https://doi.org/10.1046/j.1523-1747.1998.00107.x
Cheng, K., Cai, N., Zhu, J., Yang, X., Liang, H., & Zhang, W. (2022). Tumor-associated macrophages in liver cancer: From mechanisms to therapy. Cancer Communications (London, England), 42(11), 1112–1140. https://doi.org/10.1002/cac2.12345
Cheru, N. T., Osayame, Y., & Sumida, T. S. (2025). Breaking tolerance: an update of Treg dysfunction in autoimmunity. Trends in Immunology. https://doi.org/10.1016/j.it.2025.06.007
Chu, D., Liu, T., & Yao, Y. (2023). Implications of viral infections and oncogenesis in uterine cervical carcinoma etiology and pathogenesis. Frontiers in Microbiology, 14, 1194431. https://doi.org/10.3389/fmicb.2023.1194431
Counotte, M. J., Meili, K. W., Taghavi, K., Calvet, G., Sejvar, J., & Low, N. (2019). Zika virus infection as a cause of congenital brain abnormalities and Guillain-Barré syndrome: A living systematic review. F1000Research, 8, 1433. https://doi.org/10.12688/f1000research.19918.1
Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420(6917), 860–867. https://doi.org/10.1038/nature01322
Croxford, J. L., Olson, J. K., & Miller, S. D. (2002). Epitope spreading and molecular mimicry as triggers of autoimmunity in the Theiler’s virus-induced demyelinating disease model of multiple sclerosis. Autoimmunity Reviews, 1(5), 251–260. https://doi.org/10.1016/s1568-9972(02)00080-0
Czyż, W., Chuncia-Ileczko, M., Wójcikiewicz, M., Arczewski, F., Dziedzic, K., Kulbacka, J., Wojszczyk, M., Zys, D., Pasek, P., & Ryniecka, J. (2025). Epstein-Barr virus (EBV) and systemic lupus erythematosus (SLE) association in serological studies. Quality in Sport, 37, 57143. https://doi.org/10.12775/qs.2025.37.57143
De Sanctis, P., Doneddu, P. E., Viganò, L., Selmi, C., & Nobile-Orazio, E. (2020). Guillain-Barré syndrome associated with SARS-CoV-2 infection. A systematic review. European Journal of Neurology: The Official Journal of the European Federation of Neurological Societies, 27(11), 2361–2370. https://doi.org/10.1111/ene.14462
Didona, D., & Di Zenzo, G. (2018). Humoral Epitope spreading in autoimmune bullous diseases. Frontiers in Immunology, 9, 779. https://doi.org/10.3389/fimmu.2018.00779
Dinesh, R. K., Skaggs, B. J., La Cava, A., Hahn, B. H., & Singh, R. P. (2010). CD8+ Tregs in lupus, autoimmunity, and beyond. Autoimmunity Reviews, 9(8), 560–568. https://doi.org/10.1016/j.autrev.2010.03.006
Eggenhuizen, P. J., Ng, B. H., & Ooi, J. D. (2020). Treg enhancing therapies to treat autoimmune diseases. International Journal of Molecular Sciences, 21(19), 7015. https://doi.org/10.3390/ijms21197015
Fahlquist-Hagert, C., Wittenborn, T. R., Terczyńska-Dyla, E., Kastberg, K. S., Yang, E., Rallistan, A. N., Markett, Q. R., Winther, G., Fonager, S., Voss, L. F., Pedersen, M. K., van Campen, N., Ferapontov, A., Jensen, L., Huang, J., Nieland, J. D., van der Poel, C. E., Palmfeldt, J., Carroll, M. C., … Degn, S. E. (2023). Antigen presentation by B cells enables epitope spreading across an MHC barrier. Nature Communications, 14(1), 6941. https://doi.org/10.1038/s41467-023-42541-7
Fasano, A. (2011). Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiological Reviews, 91(1), 151–175. https://doi.org/10.1152/physrev.00003.2008
Ferrari, E., Sartre, B., Squara, F., Contenti, J., Occelli, C., Lemoel, F., Levraut, J., Doyen, D., Dellamonica, J., Mondain, V., Chirio, D., Risso, K., Cua, E., Orban, J. C., Ichai, C., Labbaoui, M., Mossaz, B., Moceri, P., Appert-Flory, A., … Toulon, P. (2020). High prevalence of acquired thrombophilia without prognosis value in patients with Coronavirus disease 2019. Journal of the American Heart Association, 9(21), e017773. https://doi.org/10.1161/JAHA.120.017773
Franco, J.-S., Amaya-Amaya, J., & Anaya, J.-M. (2013). Thyroid disease and autoimmune diseases. In Autoimmunity: From Bench to Bedside [Internet]. El Rosario University Press. https://www.ncbi.nlm.nih.gov/books/NBK459466/
Fujinami, R. S., von Herrath, M. G., Christen, U., & Whitton, J. L. (2006). Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clinical Microbiology Reviews, 19(1), 80–94. https://doi.org/10.1128/CMR.19.1.80-94.2006
Gabrilovich, D. I. (2017). Myeloid-derived suppressor cells. Cancer Immunology Research, 5(1), 3–8. https://doi.org/10.1158/2326-6066.CIR-16-0297
Gouirand, V., Habrylo, I., & Rosenblum, M. D. (2022). Regulatory T cells and inflammatory mediators in autoimmune disease. The Journal of Investigative Dermatology, 142(3 Pt B), 774–780. https://doi.org/10.1016/j.jid.2021.05.010
Hanlon, P., Avenell, A., Aucott, L., & Vickers, M. A. (2014). Systematic review and meta-analysis of the sero-epidemiological association between Epstein-Barr virus and systemic lupus erythematosus. Arthritis Research & Therapy, 16(1), R3. https://doi.org/10.1186/ar4429
Harley, J. B., & James, J. A. (2010). Everyone comes from somewhere: systemic lupus erythematosus and Epstein-Barr virus induction of host interferon and humoral anti-Epstein-Barr nuclear antigen 1 immunity. Arthritis and Rheumatism, 62(6), 1571–1575. https://doi.org/10.1002/art.27421
He, R., Du, Y., & Wang, C. (2022). Epstein-Barr virus infection: the leading cause of multiple sclerosis. Signal Transduction and Targeted Therapy, 7(1), 239. https://doi.org/10.1038/s41392-022-01100-0
Helial, M. N., & Mohammed, A. H. (2022). Investigation of Coxsackie Virus Type B in Grave’s Thyroiditis. Pakistan Journal of Medical and Health Sciences, 16(6), 745–747. https://doi.org/10.53350/pjmhs22166745
Hirano, T. (2021). IL-6 in inflammation, autoimmunity and cancer. International Immunology, 33(3), 127–148. https://doi.org/10.1093/intimm/dxaa078
Houen, G., & Trier, N. H. (2020). Epstein-Barr Virus and systemic autoimmune diseases. Frontiers in Immunology, 11, 587380. https://doi.org/10.3389/fimmu.2020.587380
Huang, Z., Fu, Y., Yang, H., Zhou, Y., Shi, M., Li, Q., Liu, W., Liang, J., Zhu, L., Qin, S., Hong, H., & Liu, Y. (2024). Liquid biopsy in T-cell lymphoma: biomarker detection techniques and clinical application. Molecular Cancer, 23(1), 36. https://doi.org/10.1186/s12943-024-01947-7
Jain, S., Annett, S. L., Morgan, M. P., & Robson, T. (2021). The cancer stem cell niche in ovarian cancer and its impact on immune surveillance. International Journal of Molecular Sciences, 22(8), 4091. https://doi.org/10.3390/ijms22084091
Jiang, Y., Han, Q., Zhao, H., & Zhang, J. (2021a). The mechanisms of HBV-induced hepatocellular carcinoma. Journal of Hepatocellular Carcinoma, 8, 435–450. https://doi.org/10.2147/JHC.S307962
Jiang, Y., Han, Q., Zhao, H., & Zhang, J. (2021b). The mechanisms of HBV-induced hepatocellular carcinoma. Journal of Hepatocellular Carcinoma, 8, 435–450. https://doi.org/10.2147/JHC.S307962
Jog, N. R., & James, J. A. (2020). Epstein Barr virus and autoimmune responses in systemic lupus erythematosus. Frontiers in Immunology, 11, 623944. https://doi.org/10.3389/fimmu.2020.623944
Johann, D. J., Jr, Steliga, M., Shin, I. J., Yoon, D., Arnaoutakis, K., Hutchins, L., Liu, M., Liem, J., Walker, K., Pereira, A., Yang, M., Jeffus, S. K., Peterson, E., & Xu, J. (2018). Liquid biopsy and its role in an advanced clinical trial for lung cancer. Experimental Biology and Medicine (Maywood, N.J.), 243(3), 262–271. https://doi.org/10.1177/1535370217750087
Johnson, D. B., Balko, J. M., Compton, M. L., Chalkias, S., Gorham, J., Xu, Y., Hicks, M., Puzanov, I., Alexander, M. R., Bloomer, T. L., Becker, J. R., Slosky, D. A., Phillips, E. J., Pilkinton, M. A., Craig-Owens, L., Kola, N., Plautz, G., Reshef, D. S., Deutsch, J. S., … Moslehi, J. J. (2016a). Fulminant myocarditis with combination immune checkpoint blockade. The New England Journal of Medicine, 375(18), 1749–1755. https://doi.org/10.1056/NEJMoa1609214
Johnson, D. B., Balko, J. M., Compton, M. L., Chalkias, S., Gorham, J., Xu, Y., Hicks, M., Puzanov, I., Alexander, M. R., Bloomer, T. L., Becker, J. R., Slosky, D. A., Phillips, E. J., Pilkinton, M. A., Craig-Owens, L., Kola, N., Plautz, G., Reshef, D. S., Deutsch, J. S., … Moslehi, J. J. (2016b). Fulminant myocarditis with combination immune checkpoint blockade. The New England Journal of Medicine, 375(18), 1749–1755. https://doi.org/10.1056/NEJMoa1609214
Kharrazian, D., Herbert, M., & Lambert, J. (2023). The relationships between intestinal permeability and target antibodies for a spectrum of autoimmune diseases. International Journal of Molecular Sciences, 24(22), 16352. https://doi.org/10.3390/ijms242216352
Lazar, V., Ditu, L.-M., Pircalabioru, G. G., Gheorghe, I., Curutiu, C., Holban, A. M., Picu, A., Petcu, L., & Chifiriuc, M. C. (2018). Aspects of gut Microbiota and immune system interactions in infectious diseases, immunopathology, and cancer. Frontiers in Immunology, 9, 1830. https://doi.org/10.3389/fimmu.2018.01830
Lee, G. R. (2018). The balance of Th17 versus Treg cells in autoimmunity. International Journal of Molecular Sciences, 19(3). https://doi.org/10.3390/ijms19030730
Lei, Y., Xu, X., Liu, H., Chen, L., Zhou, H., Jiang, J., Yang, Y., & Wu, B. (2021). HBx induces hepatocellular carcinogenesis through ARRB1-mediated autophagy to drive the G1/S cycle. Autophagy, 17(12), 4423–4441. https://doi.org/10.1080/15548627.2021.1917948
Lemus, Y. B., Martínez, G. A., Lugo, L. P., Escorcia, L. G., Peñata, E. Z., Llanos, N. S., Bonfanti, A. C., Acosta-Hoyos, A. J., & Quiroz, E. N. (2024). Gene profiling of Epstein-Barr Virus and human endogenous retrovirus in peripheral blood mononuclear cells of SLE patients: immune response implications. Scientific Reports, 14(1), 20236. https://doi.org/10.1038/s41598-024-70913-6
Levrero, M., & Zucman-Rossi, J. (2016). Mechanisms of HBV-induced hepatocellular carcinoma. Journal of Hepatology, 64(1 Suppl), S84–S101. https://doi.org/10.1016/j.jhep.2016.02.021
Li, Z.-X., Zeng, S., Wu, H.-X., & Zhou, Y. (2019). The risk of systemic lupus erythematosus associated with Epstein-Barr virus infection: a systematic review and meta-analysis. Clinical and Experimental Medicine, 19(1), 23–36. https://doi.org/10.1007/s10238-018-0535-0
Luijten, L. W. G., Leonhard, S. E., van der Eijk, A. A., Doets, A. Y., Appeltshauser, L., Arends, S., Attarian, S., Benedetti, L., Briani, C., Casasnovas, C., Castellani, F., Dardiotis, E., Echaniz-Laguna, A., Garssen, M. P. J., Harbo, T., Huizinga, R., Humm, A. M., Jellema, K., van der Kooi, A. J., … IGOS consortium. (2021). Guillain-Barré syndrome after SARS-CoV-2 infection in an international prospective cohort study. Brain: A Journal of Neurology, 144(11), 3392–3404. https://doi.org/10.1093/brain/awab279
Ma, L., Guo, H., Zhao, Y., Liu, Z., Wang, C., Bu, J., Sun, T., & Wei, J. (2024). Liquid biopsy in cancer current: status, challenges and future prospects. Signal Transduction and Targeted Therapy, 9(1), 336. https://doi.org/10.1038/s41392-024-02021-w
Marklund, L., & Hammarstedt, L. (2011). Impact of HPV in oropharyngeal cancer. Journal of Oncology, 2011, 509036. https://doi.org/10.1155/2011/509036
Marrugo-Ramírez, J., Mir, M., & Samitier, J. (2018). Blood-based cancer biomarkers in liquid biopsy: A promising non-invasive alternative to tissue biopsy. International Journal of Molecular Sciences, 19(10), 2877. https://doi.org/10.3390/ijms19102877
Meagher, T. (2024). Autoimmune Diseases following COVID-19 Infection: How Solid is the Evidence? Journal of Insurance Medicine (New York, N.Y.), 51(3), 125–128. https://doi.org/10.1029/AAIMEDICINE-D-24-00026.1
Miller, S. D., Vanderlugt, C. L., Begolka, W. S., Pao, W., Yauch, R. L., Neville, K. L., Katz-Levy, Y., Carrizosa, A., & Kim, B. S. (1997). Persistent infection with Theiler’s virus leads to CNS autoimmunity via epitope spreading. Nature Medicine, 3(10), 1133–1136. https://doi.org/10.1038/nm1097-1133
Moody, C. A., & Laimins, L. A. (2010). Human papillomavirus oncoproteins: pathways to transformation. Nature Reviews. Cancer, 10(8), 550–560. https://doi.org/10.1038/nrc2886
Moriya, K., Fujie, H., Shintani, Y., Yotsuyanagi, H., Tsutsumi, T., Ishibashi, K., Matsuura, Y., Kimura, S., Miyamura, T., & Koike, K. (1998). The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nature Medicine, 4(9), 1065–1067. https://doi.org/10.1038/2053
Mu, Q., Kirby, J., Reilly, C. M., & Luo, X. M. (2017). Leaky gut as a danger signal for autoimmune diseases. Frontiers in Immunology, 8, 598. https://doi.org/10.3389/fimmu.2017.00598
Olsen, N. J., Choi, M. Y., & Fritzler, M. J. (2017). Emerging technologies in autoantibody testing for rheumatic diseases. Arthritis Research & Therapy, 19(1), 172. https://doi.org/10.1186/s13075-017-1380-3
Owliaee, I., Khaledian, M., Boroujeni, A. K., & Shojaeian, A. (2023). Engineered small extracellular vesicles as a novel platform to suppress human oncovirus-associated cancers. Infectious Agents and Cancer, 18(1), 69. https://doi.org/10.1186/s13027-023-00549-0
Peng, K., Li, X., Yang, D., Chan, S. C. W., Zhou, J., Wan, E. Y. F., Chui, C. S. L., Lai, F. T. T., Wong, C. K. H., Chan, E. W. Y., Leung, W. K., Lau, C.-S., & Wong, I. C. K. (2023). Risk of autoimmune diseases following COVID-19 and the potential protective effect from vaccination: a population-based cohort study. EClinicalMedicine, 63(102154), 102154. https://doi.org/10.1016/j.eclinm.2023.102154
Postow, M. A., Sidlow, R., & Hellmann, M. D. (2018). Immune-related adverse events associated with immune checkpoint blockade. The New England Journal of Medicine, 378(2), 158–168. https://doi.org/10.1056/NEJMra1703481
Qin, Y., Gao, C., & Luo, J. (2022). Metabolism characteristics of Th17 and regulatory T cells in autoimmune diseases. Frontiers in Immunology, 13, 828191. https://doi.org/10.3389/fimmu.2022.828191
Ribatti, D. (2024). Gut microbiota, intestinal permeability, and systemic inflammation: a narrative review. Comment. Internal and Emergency Medicine, 19(5), 1515–1516. https://doi.org/10.1007/s11739-024-03600-z
Rohrhofer, J., Graninger, M., Lettenmaier, L., Schweighardt, J., Gentile, S. A., Koidl, L., Ret, D., Stingl, M., Puchhammer-Stöckl, E., & Untersmayr, E. (2023). Association between Epstein-Barr-Virus reactivation and development of Long-COVID fatigue. Allergy, 78(1), 297–299. https://doi.org/10.1111/all.15471
Root-Bernstein, R. (n.d.). Autoimmunity infection: immune heterogeneity self-directed immune response.
Rozenblyum, E. V., Allen, U. D., Silverman, E. D., & Levy, D. M. (2013). Cytomegalovirus infection in childhood-onset systemic lupus erythematosus. International Journal of Clinical Rheumatology, 8(1), 137–146. https://doi.org/10.2217/ijr.12.82
Sadowski, J., Huk, J., Otulak, S., Zawiło, J., Klaudel, T., Roszak, M., Tenczyński, D., & Bułdak, R. J. (2025). Association between Guillain-Barré syndrome and SARS-CoV-2 virus infection, including the impact of COVID-19 vaccination in the context of the development and general clinical characteristics of the disease. Journal of Neurovirology. https://doi.org/10.1007/s13365-025-01267-6
Sawicka-Gutaj, N., Wietrzyk, D., Zawalna, N., Erampamoorthy, A., & Ruchała, M. (2022). Autoimmune disorders and thyroid function in patients with rheumatoid arthritis after biological treatment. Rheumatology Forum, 8(3), 111–121. https://doi.org/10.5603/rf.2022.0016
Shalapour, S., & Karin, M. (2015). Immunity, inflammation, and cancer: an eternal fight between good and evil. The Journal of Clinical Investigation, 125(9), 3347–3355. https://doi.org/10.1172/JCI80007
Shim, C.-H., Cho, S., Shin, Y.-M., & Choi, J.-M. (2022). Emerging role of bystander T cell activation in autoimmune diseases. BMB Reports, 55(2), 57–64. https://doi.org/10.5483/bmbrep.2022.55.2.183
Smatti, M. K., Al Thani, A. A., & Yassine, H. M. (2018). Viral-induced enhanced disease illness. Frontiers in Microbiology, 9, 2991. https://doi.org/10.3389/fmicb.2018.02991
Son, K., Jamil, R., Chowdhury, A., Mukherjee, M., Venegas, C., Miyasaki, K., Zhang, K., Patel, Z., Salter, B., Yuen, A. C. Y., Lau, K. S.-K., Cowbrough, B., Radford, K., Huang, C., Kjarsgaard, M., Dvorkin-Gheva, A., Smith, J., Li, Q.-Z., Waserman, S., … Mukherjee, M. (2023). Circulating anti-nuclear autoantibodies in COVID-19 survivors predict long COVID symptoms. The European Respiratory Journal: Official Journal of the European Society for Clinical Respiratory Physiology, 61(1). https://doi.org/10.1183/13993003.00970-2022
Strizzi, C. T., Ambrogio, M., Zanoni, F., Bonerba, B., Bracaccia, M. E., Grandaliano, G., & Pesce, F. (2024). Epitope spreading in immune-mediated glomerulonephritis: The expanding target. International Journal of Molecular Sciences, 25(20). https://doi.org/10.3390/ijms252011096
Sundaresan, B., Shirafkan, F., Ripperger, K., & Rattay, K. (2023). The role of viral infections in the onset of autoimmune diseases. Viruses, 15(3). https://doi.org/10.3390/v15030782
Taeschler, P., Cervia, C., Zurbuchen, Y., Hasler, S., Pou, C., Tan, Z., Adamo, S., Raeber, M. E., Bächli, E., Rudiger, A., Stüssi-Helbling, M., Huber, L. C., Brodin, P., Nilsson, J., Probst-Müller, E., & Boyman, O. (2022). Autoantibodies in COVID-19 correlate with antiviral humoral responses and distinct immune signatures. Allergy, 77(8), 2415–2430. https://doi.org/10.1111/all.15302
Tang DO MPH, W., Das MD, S., & Krudy MD, Z. (2021). Coxsackie Virus Induced Graves’ Disease in an Immunocompetent Patient. International Journal of Innovative Research in Medical Science, 6(10), 731–734. https://doi.org/10.23958/ijirms/vol06-i10/1231
Tarhini, A. A., Zahoor, H., Lin, Y., Malhotra, U., Sander, C., Butterfield, L. H., & Kirkwood, J. M. (2015). Baseline circulating IL-17 predicts toxicity while TGF-β1 and IL-10 are prognostic of relapse in ipilimumab neoadjuvant therapy of melanoma. Journal for Immunotherapy of Cancer, 3(1), 39. https://doi.org/10.1186/s40425-015-0081-1
Tesch, F., Ehm, F., Vivirito, A., Wende, D., Batram, M., Loser, F., Menzer, S., Jacob, J., Roessler, M., Seifert, M., Kind, B., König, C., Schulte, C., Buschmann, T., Hertle, D., Ballesteros, P., Baßler, S., Bertele, B., Bitterer, T., … Schmitt, J. (2023). Incident autoimmune diseases in association with SARS-CoV-2 infection: a matched cohort study. Clinical Rheumatology, 42(10), 2905–2914. https://doi.org/10.1007/s10067-023-06670-0
Turetta, M., Ben, F. D., Brisotto, G., Biscontin, E., Bulfoni, M., Cesselli, D., Colombatti, A., Scoles, G., Gigli, G., & Del Mercato, L. L. (2018). Emerging technologies for cancer research: Towards personalized medicine with microfluidic platforms and 3D tumor models. Current Medicinal Chemistry, 25(35), 4616–4637. https://doi.org/10.2174/0929867325666180605122633
Vahabi, M., Ghazanfari, T., & Sepehrnia, S. (2022). Molecular mimicry, hyperactive immune system, and SARS-COV-2 are three prerequisites of the autoimmune disease triangle following COVID-19 infection. International Immunopharmacology, 112(109183), 109183. https://doi.org/10.1016/j.intimp.2022.109183
Valaparla, V. L., Rane, S. P., Patel, C., & Li, X. (2024). Guillain-Barre syndrome and link with COVID-19 infection and vaccination: a review of literature. Frontiers in Neurology, 15, 1396642. https://doi.org/10.3389/fneur.2024.1396642
Vandermeulen, C., O’Grady, T., Wayet, J., Galvan, B., Maseko, S., Cherkaoui, M., Desbuleux, A., Coppin, G., Olivet, J., Ben Ameur, L., Kataoka, K., Ogawa, S., Hermine, O., Marcais, A., Thiry, M., Mortreux, F., Calderwood, M. A., Van Weyenbergh, J., Peloponese, J.-M., … Twizere, J.-C. (2021). The HTLV-1 viral oncoproteins Tax and HBZ reprogram the cellular mRNA splicing landscape. PLoS Pathogens, 17(9), e1009919. https://doi.org/10.1371/journal.ppat.1009919
Wan, Z., Zhou, Z., Liu, Y., Lai, Y., Luo, Y., Peng, X., & Zou, W. (2020). Regulatory T cells and T helper 17 cells in viral infection. Scandinavian Journal of Immunology, 91(5), e12873. https://doi.org/10.1111/sji.12873
Xiao, Q., Liu, Y., Li, T., Wang, C., He, S., Zhai, L., Yang, Z., Zhang, X., Wu, Y., & Liu, Y. (2025). Viral oncogenesis in cancer: from mechanisms to therapeutics. Signal Transduction and Targeted Therapy, 10(1), 151. https://doi.org/10.1038/s41392-025-02197-9
Xie, S., Wei, J., & Wang, X. (2025). The intersection of influenza infection and autoimmunity. Frontiers in Immunology, 16, 1558386. https://doi.org/10.3389/fimmu.2025.1558386
Yoo, J. Y., Groer, M., Dutra, S. V. O., Sarkar, A., & McSkimming, D. I. (2020). Gut Microbiota and immune system interactions. Microorganisms, 8(10), 1587. https://doi.org/10.3390/microorganisms8101587
Yosri, M., Dokhan, M., Aboagye, E., Al Moussawy, M., & Abdelsamed, H. A. (2024). Mechanisms governing bystander activation of T cells. Frontiers in Immunology, 15, 1465889. https://doi.org/10.3389/fimmu.2024.1465889
Young, L. S., Yap, L. F., & Murray, P. G. (2016). Epstein-Barr virus: more than 50 years old and still providing surprises. Nature Reviews. Cancer, 16(12), 789–802. https://doi.org/10.1038/nrc.2016.92
Zhang, S., Gang, X., Yang, S., Cui, M., Sun, L., Li, Z., & Wang, G. (2021a). The alterations in and the role of the Th17/Treg balance in metabolic diseases. Frontiers in Immunology, 12, 678355. https://doi.org/10.3389/fimmu.2021.678355
Zhang, S., Gang, X., Yang, S., Cui, M., Sun, L., Li, Z., & Wang, G. (2021b). The alterations in and the role of the Th17/Treg balance in metabolic diseases. Frontiers in Immunology, 12, 678355. https://doi.org/10.3389/fimmu.2021.678355
Zhang, T., Yu, Z., Gao, S., Zhang, Y., Wang, C., Jian, S., Wang, L., Gou, L., Li, J., Ma, M., & Song, H. (2023). Clinical phenotypes and prognosis of cytomegalovirus infection in the pediatric systemic lupus erythematosus: a longitudinal analysis. Pediatric Rheumatology Online Journal, 21(1), 25. https://doi.org/10.1186/s12969-023-00807-w
Zhao, T., Wang, Z., Fang, J., Cheng, W., Zhang, Y., Huang, J., Xu, L., Gou, H., Zeng, L., Jin, Z., & Matsuoka, M. (2022). HTLV-1 activates YAP via NF-κB/p65 to promote oncogenesis. Proceedings of the National Academy of Sciences of the United States of America, 119(9), e2115316119. https://doi.org/10.1073/pnas.2115316119
Views:
39
Downloads:
23
Copyright (c) 2025 Monika Czekalska, Patrycja Jędrzejewska-Rzezak, Kinga Knutelska, Natalia Kulicka, Aleksandra Winsyk, Paulina Gajniak, Maciej Karwat, Tytus Tyralik, Klaudia Bilińska, Joanna Węgrzecka

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.