THE GUT-BRAIN AXIS IN AUTISM SPECTRUM DISORDER: MICROBIOTA-TARGETED THERAPIES AND NEUROBIOLOGICAL INSIGHTS

Keywords: Autism, Gut Microbiota, Gut-Brain Axis, Short-Chain Fatty Acids, Dysbiosis, Microbiota-Targeted Interventions

Abstract

Introduction: Autism spectrum disorders (ASD) are complex neurodevelopmental disorders with an etiology that includes genetic, environmental, immunological, and neurobiological factors. Increasing evidence suggests that the gut-brain axis (GBA), a bidirectional communication system linking the gastrointestinal tract with the central nervous system, may play a key role in their pathogenesis.

Research objectives: This review aimed to provide an overview of current insights into the relationship between gut microbiota and brain function in the context of ASD, with a specific focus on neuroimmunological, neuroendocrine, and metabolic pathways.

Methods: The methodology involved an analysis of scientific literature focusing on studies published in the last 15 years, sourced from PubMed, Google Scholar, and Web of Science databases. The review included experimental, clinical, and review studies related to gut microbiota, dysbiosis, immune response, hypothalamic-pituitary-adrenal (HPA) axis activation, stress, and microbiota-targeted interventions.

Key findings: Children with ASD exhibit characteristic alterations in microbiota composition, increased intestinal permeability, and chronic inflammation. Dysbiosis disrupts the metabolism of neurotransmitters (GABA, serotonin, dopamine), affecting brain function. A relationship has been identified between the microbiota and activation of the HPA axis as well as the stress response. Factors such as cesarean section delivery, antibiotic therapy, and feeding methods modify the microbiota in early life. Probiotic, prebiotic, and microbiota transplantation therapies may improve ASD symptoms.

Conclusions: Modulation of the gut microbiota through probiotics, prebiotics, and Fecal Microbiota Transplantation (FMT) may support ASD treatment. However, further clinical research and ethical guidelines are necessary to ensure their safe application in children.

References

Ma, B., Liang, J., Dai, M., Wang, J., Luo, J., Zhang, Z., et al. (2019). Altered gut microbiota in Chinese children with autism spectrum disorders. Frontiers in Cellular and Infection Microbiology, 9, 40. https://doi.org/10.3389/fcimb.2019.00040

Cryan, J. F., O’Riordan, K. J., Cowan, C. S., Sandhu, K. V., Bastiaanssen, T. F., Boehme, M., et al. (2019). The microbiota-gut-brain axis. Physiological Reviews, 99(4), 1877–2013. https://doi.org/10.1152/physrev.00018.2018

Sharon, G., Cruz, N. J., Kang, D. W., Gandal, M. J., Wang, B., Kim, Y. M., et al. (2019). Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell, 177(6), 1600–1618.e17. https://doi.org/10.1016/j.cell.2019.05.004

McElhanon, B. O., McCracken, C., Karpen, S., & Sharp, W. G. (2014). Gastrointestinal symptoms in autism spectrum disorder: A meta-analysis. Pediatrics, 133(5), 872–883. https://doi.org/10.1542/peds.2013-3995

Mayer, E. A., Knight, R., Mazmanian, S. K., Cryan, J. F., & Tillisch, K. (2014). Gut microbes and the brain: Paradigm shift in neuroscience. Journal of Neuroscience, 34(46), 15490–15496. https://doi.org/10.1523/JNEUROSCI.3299-14.2014

Carabotti, M., Scirocco, A., Maselli, M. A., & Severi, C. (2015). The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Annals of Gastroenterology, 28(2), 203–209.

Bonaz, B., Bazin, T., & Pellissier, S. (2018). The vagus nerve at the interface of the microbiota-gut-brain axis. Frontiers in Neuroscience, 12, 49. https://doi.org/10.3389/fnins.2018.00049

Browning, K. N., & Travagli, R. A. (2014). Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Comprehensive Physiology, 4(4), 1339–1368. https://doi.org/10.1002/cphy.c130055

Fülling, C., Dinan, T. G., & Cryan, J. F. (2019). Gut microbe to brain signaling: What happens in vagus. Neuron, 101(6), 998–1002. https://doi.org/10.1016/j.neuron.2019.02.008

Hsiao, E. Y., McBride, S. W., Hsien, S., Sharon, G., Hyde, E. R., McCue, T., et al. (2013). Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 155(7), 1451–1463. https://doi.org/10.1016/j.cell.2013.11.024

Fiorentino, M., Sapone, A., Senger, S., Camhi, S. S., Kadzielski, S. M., Buie, T. M., et al. (2016). Blood-brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Molecular Autism, 7, 49. https://doi.org/10.1186/s13229-016-0110-z

Barrett, E., Ross, R. P., O'Toole, P. W., Fitzgerald, G. F., & Stanton, C. (2012). γ-Aminobutyric acid production by culturable bacteria from the human intestine. Journal of Applied Microbiology, 113(2), 411–417. https://doi.org/10.1111/j.1365-2672.2012.05344.x

Dinan, T. G., & Cryan, J. F. (2017). Gut-brain axis in 2016: Brain-gut-microbiota axis—Mood, metabolism and behaviour. Nature Reviews Gastroenterology & Hepatology, 14(2), 69–70. https://doi.org/10.1038/nrgastro.2016.200

Yano, J. M., Yu, K., Donaldson, G. P., Shastri, G. G., Ann, P., Ma, L., et al. (2015). Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell, 161(2), 264–276. https://doi.org/10.1016/j.cell.2015.02.047

Clarke, G., Grenham, S., Scully, P., Fitzgerald, P., Moloney, R. D., Shanahan, F., et al. (2013). The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Molecular Psychiatry, 18(6), 666–673. https://doi.org/10.1038/mp.2012.77

Silva, Y. P., Bernardi, A., & Frozza, R. L. (2020). The role of short-chain fatty acids from gut microbiota in gut-brain communication. Frontiers in Endocrinology, 11, 25. https://doi.org/10.3389/fendo.2020.00025

Dalile, B., Van Oudenhove, L., Vervliet, B., & Verbeke, K. (2019). The role of short-chain fatty acids in microbiota–gut–brain communication. Nature Reviews Gastroenterology & Hepatology, 16(8), 461–478. https://doi.org/10.1038/s41575-019-0157-3

O'Mahony, S. M., Clarke, G., Borre, Y. E., Dinan, T. G., & Cryan, J. F. (2015). Serotonin, tryptophan metabolism and the brain–gut–microbiome axis. Behavioural Brain Research, 277, 32–48. https://doi.org/10.1016/j.bbr.2014.07.027

Braniste, V., Al-Asmakh, M., Kowal, C., Anuar, F., Abbaspour, A., Tóth, M., et al. (2014). The gut microbiota influences blood-brain barrier permeability in mice. Science Translational Medicine, 6(263), 263ra158. https://doi.org/10.1126/scitranslmed.3009759

Fung, T. C., Olson, C. A., & Hsiao, E. Y. (2017). Interactions between the microbiota, immune and nervous systems in health and disease. Nature Neuroscience, 20(2), 145–155. https://doi.org/10.1038/nn.4476

Sharon, G., Sampson, T. R., Geschwind, D. H., & Mazmanian, S. K. (2019). The central nervous system and the gut microbiome. Cell, 176(6), 1352–1369. https://doi.org/10.1016/j.cell.2019.02.037

Finegold, S. M., Dowd, S. E., Gontcharova, V., Liu, C., Henley, K. E., Wolcott, R. D., et al. (2010). Gastrointestinal microflora studies in children with autism. Anaerobe, 16(4), 444–453. https://doi.org/10.1016/j.anaerobe.2010.06.008

Kang, D. W., Park, J. G., Ilhan, Z. E., Wallstrom, G., Labaer, J., Adams, J. B., et al. (2013). Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS ONE, 8(7), e68322. https://doi.org/10.1371/journal.pone.0068322

Fung, T. C., Olson, C. A., & Hsiao, E. Y. (2017). The microbiota-immune axis as a central mediator of gut-brain communication. Neuron, 93(2), 253–268. https://doi.org/10.1016/j.neuron.2016.12.023

Li, Q., & Zhou, J. M. (2016). The microbiota–gut–brain axis and its potential therapeutic role in autism spectrum disorder. Neuroscience, 324, 131–139. https://doi.org/10.1016/j.neuroscience.2016.03.013

MacFabe, D. F. (2015). Short-chain fatty acid fermentation products of the gut microbiome: Implications in autism spectrum disorders. Microbial Ecology in Health and Disease, 26(1), 28177. https://doi.org/10.3402/mehd.v26.28177

De Theije, C. G., Wopereis, H., Ramadan, M., van Eijndthoven, T., Lambert, J., Knol, J., et al. (2014). Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain, Behavior, and Immunity, 37, 197–206. https://doi.org/10.1016/j.bbi.2013.12.005

Hughes, H. K., Rose, D., & Ashwood, P. (2018). Immune dysfunction and autoimmunity as pathological mechanisms in autism spectrum disorders. Frontiers in Cellular Neuroscience, 12, 405. https://doi.org/10.3389/fncel.2018.00405

Rose, D. R., Yang, H., Serena, G., Sturgeon, C., Ma, B., Careaga, M., et al. (2018). Differential immune responses and microbiota profiles in children with autism spectrum disorders and gastrointestinal symptoms. Brain, Behavior, and Immunity, 70, 354–368. https://doi.org/10.1016/j.bbi.2018.03.025

Vuong, H. E., & Hsiao, E. Y. (2017). Emerging roles for the gut microbiome in autism spectrum disorder. Biological Psychiatry, 81(5), 411–423. https://doi.org/10.1016/j.biopsych.2016.08.024

de Theije, C. G. M., Wu, J., da Silva, S. L., Kamphuis, P. J. G. H., Garssen, J., Korte, S. M., et al. (2012). Pathways underlying the gut-to-brain connection in autism spectrum disorders as future targets for therapy. Neuroscience & Biobehavioral Reviews, 36(3), 901–914. https://doi.org/10.1016/j.neubiorev.2011.12.010

Morgan, J. T., Chana, G., Abramson, I., Semendeferi, K., Courchesne, E., & Everall, I. P. (2010). Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biological Psychiatry, 68(4), 368–376. https://doi.org/10.1016/j.biopsych.2010.05.024

Suzuki, K., Sugihara, G., Ouchi, Y., Nakamura, K., Futatsubashi, M., Takebayashi, K., et al. (2013). Microglial activation in young adults with autism spectrum disorder. JAMA Psychiatry, 70(1), 49–58. https://doi.org/10.1001/jamapsychiatry.2013.272

Onore, C., Careaga, M., & Ashwood, P. (2012). Decreased cellular response to mitogens in children with autism spectrum disorders. Journal of Neuroimmunology, 251(1–2), 45–54. https://doi.org/10.1016/j.jneuroim.2012.06.002

Choi, G. B., Yim, Y. S., Wong, H., Kim, S., Kim, H., Kim, S. V., et al. (2016). The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science, 351(6276), 933–939. https://doi.org/10.1126/science.aad0314

Theoharides, T. C., Asadi, S., & Patel, A. B. (2012). Mast cell activation and autism. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1822(1), 34–41. https://doi.org/10.1016/j.bbadis.2011.10.017

Kang, D. W., Adams, J. B., Gregory, A. C., Borody, T., Chittick, L., Fasano, A., et al. (2017). Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: An open-label study. Microbiome, 5(1), 10. https://doi.org/10.1186/s40168-016-0225-7

De Angelis, M., Piccolo, M., Vannini, L., Siragusa, S., De Giacomo, A., Serrazzanetti, D. I., et al. (2013). Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS ONE, 8(10), e76993. https://doi.org/10.1371/journal.pone.0076993

MacFabe, D. F., Cain, D. P., Rodriguez-Capote, K., Franklin, A. E., Hoffman, J. E., Boon, F., et al. (2007). Neurobiological effects of intraventricular propionic acid in rats: Possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behavioural Brain Research, 176(1), 149–169. https://doi.org/10.1016/j.bbr.2006.07.025

Shultz, S. R., MacFabe, D. F., Martin, S., Jackson, J., Taylor, R., Boon, F., et al. (2008). Intracerebroventricular injection of propionic acid, an enteric bacterial metabolic end-product, impairs social behavior in the rat. Behavioural Brain Research, 200(1), 33–39. https://doi.org/10.1016/j.bbr.2008.01.021

De Angelis, M., Francavilla, R., Piccolo, M., De Giacomo, A., & Gobbetti, M. (2015). Autism spectrum disorders and intestinal microbiota. Gut Microbes, 6(3), 207–213. https://doi.org/10.1080/19490976.2015.1035855

Finegold, S. M., Downes, J., & Summanen, P. H. (2010). Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe, 16(4), 444–453. https://doi.org/10.1016/j.anaerobe.2010.06.008

Bryn, V., Verkerk, R., Skjeldal, O. H., Saugstad, O. D., & Ormstad, H. (2017). Elevated plasma kynurenine levels in children and adolescents with autism spectrum disorders indicate increased tryptophan degradation via the kynurenine pathway. Frontiers in Psychiatry, 8, 1–9. https://doi.org/10.3389/fpsyt.2017.00097

Strati, F., Cavalieri, D., Albanese, D., De Felice, C., Donati, C., Hayek, J., et al. (2017). New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome, 5, 24. https://doi.org/10.1186/s40168-017-0242-1

Qiao, Y., Ma, N., Liu, Z., Zhang, L., Li, Y., & Zheng, Y. (2022). Probiotic and prebiotic interventions in autism spectrum disorders: A systematic review and meta-analysis. Frontiers in Psychiatry, 13, 879760. https://doi.org/10.3389/fpsyt.2022.879760

West, R., Roberts, E., Sichel, L., & Sichel, J. (2021). Probiotics for the treatment of autism spectrum disorder: A systematic review. Nutrition Reviews, 79(6), 661–678. https://doi.org/10.1093/nutrit/nuaa105

Grimaldi, R., Gibson, G. R., Vulevic, J., Giallourou, N., Castro-Mejía, J. L., Hansen, L. H., et al. (2018). A prebiotic intervention study in children with autism spectrum disorders (ASDs). Microbiome, 6(1), 133. https://doi.org/10.1186/s40168-018-0514-6

Mulloy, A., Lang, R., O’Reilly, M., Sigafoos, J., Lancioni, G., & Rispoli, M. (2010). Gluten-free and casein-free diets in the treatment of autism spectrum disorders: A systematic review. Research in Autism Spectrum Disorders, 4(3), 328–339. https://doi.org/10.1016/j.rasd.2009.10.008

Sathe, N., Andrews, J. C., McPheeters, M. L., & Warren, Z. E. (2017). Nutritional and dietary interventions for autism spectrum disorder: A systematic review. Pediatrics, 139(6), e20170346. https://doi.org/10.1542/peds.2017-0346

Krigsman, A., John, B., Adams, J. B., Linday, L. A., Harshman, S. W., Minichino, A., et al. (2022). Durable gastrointestinal and behavioral improvements following fecal microbiota transplant in children with autism spectrum disorder. Frontiers in Microbiology, 13, 841384. https://doi.org/10.3389/fmicb.2022.841384

Kang, D. W., Adams, J. B., Coleman, D. M., Pollard, E. L., Maldonado, J., McDonough-Means, S., et al. (2019). Long-term benefit of Microbiota Transfer Therapy in autism spectrum disorder: A 2-year follow-up study. Scientific Reports, 9, 5821. https://doi.org/10.1038/s41598-019-42183-0

Li, Q., & Zhou, J. M. (2017). The effect of antibiotics on gut microbiota and behavior in mice: Implications for human neurodevelopmental disorders. Biomedicine & Pharmacotherapy, 91, 881–888. https://doi.org/10.1016/j.biopha.2017.05.109

Desbonnet, L., Garrett, L., Clarke, G., Kiely, B., Cryan, J. F., & Dinan, T. G. (2010). Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience, 170(4), 1179–1188. https://doi.org/10.1016/j.neuroscience.2010.08.005

Tordjman, S., Somogyi, E., Coulon, N., Kermarrec, S., Cohen, D., Bronsard, G., et al. (2014). Gene x Environment interactions in autism spectrum disorders: Role of epigenetic mechanisms. Frontiers in Psychiatry, 5, 53. https://doi.org/10.3389/fpsyt.2014.00053

Hallmayer, J., Cleveland, S., Torres, A., Phillips, J., Cohen, B., Torigoe, T., et al. (2011). Genetic heritability and shared environmental factors among twin pairs with autism. Archives of General Psychiatry, 68(11), 1095–1102. https://doi.org/10.1001/archgenpsychiatry.2011.76

Devlin, B., & Scherer, S. W. (2012). Genetic architecture in autism spectrum disorder. Current Opinion in Genetics & Development, 22(3), 229–237. https://doi.org/10.1016/j.gde.2012.03.002

Iossifov, I., Ronemus, M., Levy, D., Wang, Z., Hakker, I., Rosenbaum, J., et al. (2012). De novo gene disruptions in children on the autistic spectrum. Neuron, 74(2), 285–299. https://doi.org/10.1016/j.neuron.2012.04.009

Qureshi, I. A., & Mehler, M. F. (2014). Genetic and epigenetic underpinnings of autism spectrum disorders. Current Opinion in Neurology, 27(2), 121–129. https://doi.org/10.1097/WCO.0000000000000070

Campbell, D. B., Sutcliffe, J. S., Ebert, P. J., Militerni, R., Bravaccio, C., Trillo, S., et al. (2006). A genetic variant that disrupts MET transcription is associated with autism. Proceedings of the National Academy of Sciences, 103(45), 16834–16839. https://doi.org/10.1073/pnas.0605296103

Gonzalez-Perez, G., & Lamouse-Smith, E. S. (2017). Gastrointestinal microbiome dysbiosis in children with autism spectrum disorders: Causes and consequences. Gut Microbes, 8(6), 408–420. https://doi.org/10.1080/19490976.2017.1345416

Borre, Y. E., Moloney, R. D., Clarke, G., Dinan, T. G., & Cryan, J. F. (2014). The impact of microbiota on brain and behavior: Mechanisms & therapeutic potential. In Advances in Experimental Medicine and Biology, 817, 373–403. https://doi.org/10.1007/978-1-4939-0897-4_17

Stilling, R. M., Dinan, T. G., & Cryan, J. F. (2014). Microbial genes, brain & behaviour – epigenetic regulation of the gut–brain axis. Genes, Brain and Behavior, 13(1), 69–86. https://doi.org/10.1111/gbb.12109

Davie, J. R. (2003). Inhibition of histone deacetylase activity by butyrate. The Journal of Nutrition, 133(7 Suppl), 2485S–2493S. https://doi.org/10.1093/jn/133.7.2485S

Nardone, S., Sams, D. S., Reuveni, E., Getselter, D., Oron, O., Karpuj, M., et al. (2014). DNA methylation analysis of the autistic brain reveals multiple dysregulated biological pathways. Translational Psychiatry, 4, e433. https://doi.org/10.1038/tp.2014.78

Desbonnet, L., Clarke, G., Shanahan, F., Dinan, T. G., & Cryan, J. F. (2014). Microbiota is essential for social development in the mouse. Molecular Psychiatry, 19(2), 146–148.

Sudo, N., Chida, Y., Aiba, Y., Sonoda, J., Oyama, N., Yu, X. N., et al. (2004). Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. The Journal of Physiology, 558(Pt 1), 263–275.

Bravo, J. A., Forsythe, P., Chew, M. V., Escaravage, E., Savignac, H. M., Dinan, T. G., et al. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences, 108(38), 16050–16055.

Chen, J., Wang, W., Li, Q., Wang, Y., Li, Y., & Song, Y., et al. (2019). Lactobacillus modulates the expression of genes involved in neural function in mouse hippocampus. Journal of Functional Foods, 58, 299–308.

Mor, M., Nardone, S., Sams, D. S., & Elliott, E. (2015). Hypomethylation of miR-142 promoter and upregulation of microRNAs in autism spectrum disorder. Molecular Autism, 6, 27.

Dalmasso, G., Nguyen, H. T., Yan, Y., Laroui, H., Charania, M. A., Ayyadurai, S., et al. (2011). Microbiota modulate host gene expression via microRNAs. PLoS ONE, 6(4), e19293.

Wang, Y., & Kasper, L. H. (2014). The role of microbiome in central nervous system disorders. Brain, Behavior, and Immunity, 38, 1–12.

Loke, Y. J., Hannan, A. J., & Craig, J. M. (2015). The role of epigenetic change in autism spectrum disorders. Frontiers in Neurology, 6, 107.

Arrieta, M. C., Stiemsma, L. T., Amenyogbe, N., Brown, E. M., & Finlay, B. (2014). The intestinal microbiome in early life: Health and disease. Frontiers in Immunology, 5, 427.

Herman, J. P., & Cullinan, W. E. (1997). Neurocircuitry of stress: Central control of the hypothalamo–pituitary–adrenocortical axis. Trends in Neurosciences, 20(2), 78–84.

Corbett, B. A., Mendoza, S., Abdullah, M., Wegelin, J. A., & Levine, S. (2006). Cortisol circadian rhythms and response to stress in children with autism. Psychoneuroendocrinology, 31(1), 59–68.

Tordjman, S., Anderson, G. M., Pichard, N., Charbuy, H., & Touitou, Y. (2005). Nocturnal excretion of 6-sulphatoxymelatonin in children and adolescents with autistic disorder. Biological Psychiatry, 57(2), 134–138.

Kelly, J. R., Kennedy, P. J., Cryan, J. F., Dinan, T. G., Clarke, G., & Hyland, N. P. (2015). Breaking down the barriers: The gut microbiome, intestinal permeability and stress-related psychiatric disorders. Frontiers in Cellular Neuroscience, 9, 392.

Tomchek, S. D., & Dunn, W. (2007). Sensory processing in children with and without autism: A comparative study using the short sensory profile. American Journal of Occupational Therapy, 61(2), 190–200.

Hamza, R. T., Hewedi, D. H., Ismail, M. A., & Basily, W. W. (2010). Evaluation of thyroid and adrenal functions in Egyptian autistic children: Relation to disease severity. Italian Journal of Pediatrics, 36, 71.

Schumann, C. M., & Nordahl, C. W. (2011). Bridging the gap between MRI and postmortem research in autism. Brain Research, 1380, 175–186.

Qiao, Y., Lin, Y., Deng, L., Gao, Y., Li, Y., Tang, W., et al. (2022). Probiotic and prebiotic interventions in autism spectrum disorders: A systematic review and meta-analysis. Frontiers in Psychiatry, 13, 879760. https://doi.org/10.3389/fpsyt.2022.879760

Dominguez-Bello, M. G., Costello, E. K., Contreras, M., Magris, M., Hidalgo, G., Fierer, N., & Knight, R. (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences, 107(26), 11971–11975. https://doi.org/10.1073/pnas.1002601107

Curran, E. A., O’Neill, S. M., Cryan, J. F., Kenny, L. C., Dinan, T. G., Khashan, A. S., & Kearney, P. M. (2015). Research review: Birth by caesarean section and development of autism spectrum disorder and attention-deficit/hyperactivity disorder: A systematic review and meta‐analysis. Journal of Child Psychology and Psychiatry, 56(5), 500–508. https://doi.org/10.1111/jcpp.12351

Bode, L. (2012). Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology, 22(9), 1147–1162. https://doi.org/10.1093/glycob/cws074

Penders, J., Thijs, C., Vink, C., Stelma, F. F., Snijders, B., Kummeling, I., van den Brandt, P. A., & Stobberingh, E. E. (2006). Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics, 118(2), 511–521. https://doi.org/10.1542/peds.2005-2824

Al-Farsi, Y. M., Waly, M. I., Al-Sharbati, M. M., Al-Farsi, O. A., Al-Shafaee, M. A., Al-Khaduri, M. M., & Ouhtit, A. (2012). Effect of suboptimal breast-feeding on occurrence of autism: A case-control study. Nutrition, 28(7–8), e27–e32. https://doi.org/10.1016/j.nut.2011.11.017

Rutayisire, E., Huang, K., Liu, Y., & Tao, F. (2016). The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: A systematic review. BMC Gastroenterology, 16(1), 86. https://doi.org/10.1186/s12876-016-0498-0

Bäckhed, F., Roswall, J., Peng, Y., Feng, Q., Jia, H., Kovatcheva-Datchary, P., ... & Wang, J. (2015). Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host & Microbe, 17(5), 690–703. https://doi.org/10.1016/j.chom.2015.04.004

Yang, K. L., Yen, T. A., Lin, F. J., Hsu, C. N., & Wang, C. C. (2024). Antibiotic use and risk of autism spectrum disorder and attention deficit/hyperactivity disorder: A population based cohort study. Child and Adolescent Psychiatry and Mental Health, 18, Article 82. https://doi.org/10.1186/s13034-024-00774-4

Hamad, A. F., Alessi Severini, S., Mahmud, S. M., Brownell, M., & Kuo, I. F. (2018). Early childhood antibiotic use and autism spectrum disorders: A population-based cohort study. International Journal of Epidemiology, 47(5), 1497–1506. https://doi.org/10.1093/ije/dyy162

Korpela, K., et al. (2024). Effects of a single antibiotic course on infant intestinal microbiota composition. Journal of Pediatric Microbiology, 10(1), 45–55.

Green, J. E., Wrobel, A., Todd, E., Marx, W., Berk, M., Lotfaliany, M., Castle, D., Cryan, J. F., Athan, E., & Hair, C. (2024). Early antibiotic exposure and risk of psychiatric and neurocognitive outcomes: Systematic review. The British Journal of Psychiatry, 226(3), 171–183.

Yu, H. Y., Zhou, Y. Y., Pan, L. Y., Zhang, X., & Jiang, H. Y. (2022). Early life antibiotic exposure and the subsequent risk of autism spectrum disorder and attention deficit hyperactivity disorder: A systematic review and meta analysis. Journal of Autism and Developmental Disorders, 52, 2236–2246. https://doi.org/10.1007/s10803-021-05121-6

Hoban, A. E., Moloney, R. D., Golubeva, A. V., Neufeld, K. A. M., O’Sullivan, O., Patterson, E., et al. (2016). Behavioural and neurochemical consequences of chronic gut microbiota depletion during adulthood in the rat. Neuroscience, 339, 463–477.

Cambridge Review Team. (2024). Early antibiotic exposure and risk of psychiatric and neurocognitive outcomes: Systematic review and meta analysis. The British Journal of Psychiatry, 226(3), 171–183. https://doi.org/10.1192/bjp.2024.121

Lukasik, J., Patro Gołąb, B., Horvath, A., Baron, R., Szajewska, H., & SAWANTI Working Group. (2019). Early life exposure to antibiotics and autism spectrum disorders: A systematic review. Journal of Autism and Developmental Disorders, 49(9), 3866–3876. https://doi.org/10.1007/s10803-019-04093-y

Foster, J. A., & Cryan, J. F. (2013). Gut–brain axis: How the microbiome influences anxiety and depression. Trends in Neurosciences, 36(5), 305–312. https://doi.org/10.1016/j.tins.2013.01.005

Chan, F. K. L., Ng, S. C., Wong, O. H., Su, Q., & Study Group. (2024). Identification of multikingdom gut microbiome biomarkers for autism spectrum disorder in Hong Kong children. Nature Microbiology. Advance online publication. https://doi.org/10.1038/s41564-024-01530-7

Binns, H. J., O’Connor, K. G., & de Ferranti, S. D. (2022). Ethics in pediatric practice: Informed consent, assent, and shared decision-making. Pediatrics, 149(1), e2021053766. https://doi.org/10.1542/peds.2021-053766

Sankar, P. L., & Cho, M. K. (2015). Toward a new vocabulary of human genetic variation. The Hastings Center Report, 45(5), 33–36. https://doi.org/10.1002/hast.475

Bajaj, J. S., Kassam, Z., Fagan, A., Gavis, E. A., Liu, E., & Tandon, P. (2020). Fecal microbiota transplant in cirrhosis: Impact on microbiota, metabolites, and function. Hepatology, 71(5), 1681–1690. https://doi.org/10.1002/hep.30906

Ho, J. S. Y., & Lukens, J. R. (2022). Emerging insights into the gut microbiome in autism spectrum disorders. Current Opinion in Microbiology, 67, 102138. https://doi.org/10.1016/j.mib.2021.102138

Malmqvist, E., Furberg, E., & Sandman, L. (2020). Ethical aspects of treatment allocation during an influenza pandemic. Scandinavian Journal of Public Health, 48(5), 518–523. https://doi.org/10.1177/1403494819882815

Silverman, C. (2020). Neurodiversity and medical model autism. In Understanding Autism in Adults and Aging Adults (pp. 215–232). Academic Press. https://doi.org/10.1016/B978-0-12-816737-1.00015-1

Rubeis, G., & Scully, J. L. (2018). What does it mean to be neurodiverse? The politics of autism diagnosis. Journal of Medical Ethics, 44(10), 630–634. https://doi.org/10.1136/medethics-2017-104621

Views:

3

Downloads:

1

Published
2025-09-08
Citations
How to Cite
Paulina Gajniak, Monika Czekalska, Natalia Kulicka, Kinga Knutelska, Joanna Węgrzecka, Aleksandra Winsyk, Patrycja Jędrzejewska-Rzezak, Maciej Karwat, Tytus Tyralik, & Klaudia Bilińska. (2025). THE GUT-BRAIN AXIS IN AUTISM SPECTRUM DISORDER: MICROBIOTA-TARGETED THERAPIES AND NEUROBIOLOGICAL INSIGHTS. International Journal of Innovative Technologies in Social Science, 1(3(47). https://doi.org/10.31435/ijitss.3(47).2025.3593

Most read articles by the same author(s)