FROM PREDICTION TO PREVENTION: THE ROLE OF AI IN TRANSFORMING CORONARY ARTERY DISEASE RISK ASSESSMENT
Abstract
Background: Artificial intelligence (AI) is reshaping the landscape of coronary artery disease (CAD) prevention through its ability to enhance risk prediction, early detection, and individualized interventions.
Objective: This narrative review examines the current role of AI-based models in CAD prevention, evaluating their predictive accuracy, clinical applications, and implementation challenges.
Methods: We synthesized evidence from recent systematic reviews, meta-analyses, and original studies on machine learning (ML) and deep learning (DL) techniques using multimodal data such as electronic health records (EHR), electrocardiograms (ECG), and imaging.
Key Findings: AI models consistently outperform traditional risk scores like Framingham and ASCVD in predictive performance, especially when multimodal data integration is applied. These models show particular promise in high-risk and complex populations. Additionally, AI tools contribute to clinical decision-making, including revascularization planning and precision phenotyping. However, critical limitations remain—most notably limited external validation, opacity in model explainability, and bias stemming from non-representative datasets.
Conclusions: While AI offers transformative potential in CAD prevention, responsible deployment requires addressing ethical, technical, and systemic challenges. Key strategies include improving model transparency, ensuring fairness across populations, and embedding AI tools seamlessly into clinical workflows. The success of future systems will depend on explainability, human-AI collaboration, and meaningful stakeholder engagement.
References
Agbaedeng, T. A., Noubiap, J. J., Mofo Mato, E. P., Chew, D. P., Figtree, G. A., Said, M. A., & van der Harst, P. (2021). Polygenic risk score and coronary artery disease: A meta-analysis of 979,286 participant data. Atherosclerosis, 333, 48–55. https://doi.org/10.1016/j.atherosclerosis.2021.08.020
Ahmed, A., Khaled, A., Waqar, M., Hashmi, J. A., Alfanash, H. A., Almagharbeh, W. T., Hamdache, A., & Elmouki, I. (2025). AI-Driven Early Detection of Cardiovascular Diseases: Reducing Healthcare Costs and improving patient Outcomes. https://doi.org/10.70135/seejph.vi.3521
Al-Hwsali, A., Alsaadi, B., Abdi, N., Khatab, S., Alzubaidi, M., Solaiman, B., & Househ, M. (2023). Scoping Review: Legal and Ethical Principles of Artificial Intelligence in Public Health. Studies in Health Technology and Informatics, 305, 640–643. https://doi.org/10.3233/SHTI230579
Alizadehsani, R., Khosravi, A., Roshanzamir, M., Abdar, M., Sarrafzadegan, N., Shafie, D., Khozeimeh, F., Shoeibi, A., Nahavandi, S., Panahiazar, M., Bishara, A., Beygui, R. E., Puri, R., Kapadia, S., Tan, R.-S., & Acharya, U. R. (2021). Coronary artery disease detection using artificial intelligence techniques: A survey of trends, geographical differences and diagnostic features 1991–2020. Computers in Biology and Medicine, 128, 104095. https://doi.org/10.1016/j.compbiomed.2020.104095
Al-Khlaiwi, T., Habib, S. S., Bayoumy, N., Al-Khliwi, H., & Meo, S. A. (2024). Identifying risk factors and mortality rate of premature coronary artery disease in young Saudi population. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-62970-8
Aminizadeh, S., Heidari, A., Dehghan, M., Toumaj, S., Rezaei, M., Jafari Navimipour, N., Stroppa, F., & Unal, M. (2024). Opportunities and challenges of artificial intelligence and distributed systems to improve the quality of healthcare service. Artificial Intelligence in Medicine, 149, 102779. https://doi.org/10.1016/j.artmed.2024.102779
Assadi, H., Alabed, S., Maiter, A., Salehi, M., Li, R., Ripley, D. P., Van der Geest, R. J., Zhong, Y., Zhong, L., Swift, A. J., & Garg, P. (2022). The Role of Artificial Intelligence in Predicting Outcomes by Cardiovascular Magnetic Resonance: A Comprehensive Systematic Review. In Medicina (Lithuania) (Vol. 58, Issue 8). MDPI. https://doi.org/10.3390/medicina58081087
Baskaran, L., Ying, X., Xu, Z., Al’Aref, S. J., Lee, B. C., Lee, S. E., Danad, I., Park, H. B., Bathina, R., Baggiano, A., Beltrama, V., Cerci, R., Choi, E. Y., Choi, J. H., Choi, S. Y., Cole, J., Doh, J. H., Ha, S. J., Her, A. Y., … Shaw, L. J. (2020). Machine learning insight into the role of imaging and clinical variables for the prediction of obstructive coronary artery disease and revascularization: An exploratory analysis of the CONSERVE study. PLoS ONE, 15(6). https://doi.org/10.1371/journal.pone.0233791
Bishop, A. J., Nehme, Z., Nanayakkara, S., Anderson, D., Stub, D., & Meadley, B. N. (2024). Artificial neural networks for ECG interpretation in acute coronary syndrome: A scoping review. The American Journal of Emergency Medicine, 83, 1–8. https://doi.org/10.1016/j.ajem.2024.06.026
Cai, Y., Cai, Y. Q., Tang, L. Y., Wang, Y. H., Gong, M., Jing, T. C., Li, H. J., Li-Ling, J., Hu, W., Yin, Z., Gong, D. X., & Zhang, G. W. (2024). Artificial intelligence in the risk prediction models of cardiovascular disease and development of an independent validation screening tool: a systematic review. BMC Medicine, 22(1). https://doi.org/10.1186/s12916-024-03273-7
Carrasco-Ribelles, L. A., Llanes-Jurado, J., Gallego-Moll, C., Cabrera-Bean, M., Monteagudo-Zaragoza, M., Violán, C., & Zabaleta-del-Olmo, E. (2023). Prediction models using artificial intelligence and longitudinal data from electronic health records: a systematic methodological review. Journal of the American Medical Informatics Association, 30(12), 2072–2082. https://doi.org/10.1093/jamia/ocad168
Čartolovni, A., Tomičić, A., & Lazić Mosler, E. (2022). Ethical, legal, and social considerations of AI-based medical decision-support tools: A scoping review. International Journal of Medical Informatics, 161, 104738. https://doi.org/10.1016/j.ijmedinf.2022.104738
Cau, R., Pisu, F., Suri, J. S., & Saba, L. (2025). Addressing hidden risks: Systematic review of artificial intelligence biases across racial and ethnic groups in cardiovascular diseases. European Journal of Radiology, 183, 111867. https://doi.org/10.1016/j.ejrad.2024.111867
Chen, F., Wang, L., Hong, J., Jiang, J., & Zhou, L. (2024). Unmasking bias in artificial intelligence: a systematic review of bias detection and mitigation strategies in electronic health record-based models. Journal of the American Medical Informatics Association, 31(5), 1172–1183. https://doi.org/10.1093/jamia/ocae060
Cicek, V. C., Babaoglu, M., Cinar, T., Mohamed, M. L., & Bagci, U. (n.d.). A review of prognostic prediction of coronary artery disease patients with myocardial perfusion scintigraphy and artificial intelligence. https://academic.oup.com/ehjcimaging/article/25/Supplement_1/jeae142.054/7699476
Elvas, L. B., Almeida, A., & Ferreira, J. C. (2025). The Role of AI in Cardiovascular Event Monitoring and Early Detection: Scoping Literature Review. JMIR Medical Informatics, 13, e64349–e64349. https://doi.org/10.2196/64349
Gama, F., Tyskbo, D., Nygren, J., Barlow, J., Reed, J., & Svedberg, P. (2022). Implementation Frameworks for Artificial Intelligence Translation into Health Care Practice: Scoping Review. In Journal of Medical Internet Research (Vol. 24, Issue 1). JMIR Publications Inc. https://doi.org/10.2196/32215
Garavand, A., Behmanesh, A., Aslani, N., Sadeghsalehi, H., & Ghaderzadeh, M. (2023). Towards Diagnostic Aided Systems in Coronary Artery Disease Detection: A Comprehensive Multiview Survey of the State of the Art. International Journal of Intelligent Systems, 2023(1). https://doi.org/10.1155/2023/6442756
Garcha, I., & Phillips, S. P. (2023). Social bias in artificial intelligence algorithms designed to improve cardiovascular risk assessment relative to the Framingham Risk Score: A protocol for a systematic review. BMJ Open, 13(5). https://doi.org/10.1136/bmjopen-2022-067638
Goktas, P., & Grzybowski, A. (2025). Shaping the Future of Healthcare: Ethical Clinical Challenges and Pathways to Trustworthy AI. Journal of Clinical Medicine, 14(5), 1605. https://doi.org/10.3390/jcm14051605
Gupta, A., Zaka, A., Mutahar, D., Muston, B., Tyagi, D., Farag, M., Lombardo, A., Parvez, R., Stretton, B., Kovoor, J., Mridha, N., Ramponi, F., Chan, J., Gould, P., Sivagangabalan, G., Zaman, S., Thiagalingam, A., Chow, C., Kovoor, P., … Maddern, G. (2024). Abstract 4142671: Machine-learning versus traditional risk scores for predicting clinical outcomes after coronary artery bypass graft surgery: a systematic review and meta-analysis. Circulation, 150(Suppl_1). https://doi.org/10.1161/circ.150.suppl_1.4142671
Hart, H. (2024). PATIENT EDUCATION FOR CORONARY ARTERY DISEASE PREVENTION: A LITERATURE REVIEW. American Journal of Preventive Cardiology, 19, 100810. https://doi.org/10.1016/j.ajpc.2024.100810
Jacob, C., Brasier, N., Laurenzi, E., Heuss, S., Mougiakakou, S.-G., Cöltekin, A., & Peter, M. K. (2025). AI for IMPACTS Framework for Evaluating the Long-Term Real-World Impacts of AI-Powered Clinician Tools: Systematic Review and Narrative Synthesis. Journal of Medical Internet Research, 27, e67485. https://doi.org/10.2196/67485
Jiang, B., Guo, N., Ge, Y., Zhang, L., Oudkerk, M., & Xie, X. (2020). Development and application of artificial intelligence in cardiac imaging. The British Journal of Radiology, 93(1113). https://doi.org/10.1259/bjr.20190812
Khanna, N. N., Singh, M., Maindarkar, M., Kumar, A., Johri, A. M., Mentella, L., Laird, J. R., Paraskevas, K. I., Ruzsa, Z., Singh, N., Kalra, M. K., Fernandes, J. F. E., Chaturvedi, S., Nicolaides, A., Rathore, V., Singh, I., Teji, J. S., Al-Maini, M., Isenovic, E. R., … Suri, J. S. (2023). Polygenic Risk Score for Cardiovascular Diseases in Artificial Intelligence Paradigm: A Review. Journal of Korean Medical Science, 38(46). https://doi.org/10.3346/jkms.2023.38.e395
Koyama, S., Ito, K., Terao, C., Akiyama, M., Horikoshi, M., Momozawa, Y., Matsunaga, H., Ieki, H., Ozaki, K., Onouchi, Y., Takahashi, A., Nomura, S., Morita, H., Akazawa, H., Kim, C., Seo, J., Higasa, K., Iwasaki, M., Yamaji, T., … Komuro, I. (2020). Population-specific and trans-ancestry genome-wide analyses identify distinct and shared genetic risk loci for coronary artery disease. Nature Genetics, 52(11), 1169–1177. https://doi.org/10.1038/s41588-020-0705-3
Lee, S., Chu, Y., Ryu, J., Park, Y. J., Yang, S., & Koh, S. B. (2022). Artificial Intelligence for Detection of Cardiovascular-Related Diseases from Wearable Devices: A Systematic Review and Meta-Analysis. Yonsei Medical Journal, 63(Suppl), S93. https://doi.org/10.3349/ymj.2022.63.S93
Liu, T., Krentz, A. J., Huo, Z., & Ćurčin, V. (2025). Opportunities and Challenges of Cardiovascular Disease Risk Prediction for Primary Prevention Using Machine Learning and Electronic Health Records: A Systematic Review. In Reviews in Cardiovascular Medicine (Vol. 26, Issue 4). IMR Press Limited. https://doi.org/10.31083/RCM37443
Liu, W., Laranjo, L., Klimis, H., Chiang, J., Yue, J., Marschner, S., Quiroz, J. C., Jorm, L., & Chow, C. K. (2023). Machine-learning versus traditional approaches for atherosclerotic cardiovascular risk prognostication in primary prevention cohorts: a systematic review and meta-analysis. European Heart Journal - Quality of Care and Clinical Outcomes. https://doi.org/10.1093/ehjqcco/qcad017
Moazemi, S., Vahdati, S., Li, J., Kalkhoff, S., Castano, L. J. V., Dewitz, B., Bibo, R., Sabouniaghdam, P., Tootooni, M. S., Bundschuh, R. A., Lichtenberg, A., Aubin, H., & Schmid, F. (2023). Artificial intelligence for clinical decision support for monitoring patients in cardiovascular ICUs: A systematic review. In Frontiers in Medicine (Vol. 10). Frontiers Media S.A. https://doi.org/10.3389/fmed.2023.1109411
Mohsen, F., Al-Saadi, B., Abdi, N., Khan, S., & Shah, Z. (2023). Artificial Intelligence-Based Methods for Precision Cardiovascular Medicine. In Journal of Personalized Medicine (Vol. 13, Issue 8). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/jpm13081268
Moreno-Sánchez, P. A., García-Isla, G., Corino, V. D. A., Vehkaoja, A., Brukamp, K., van Gils, M., & Mainardi, L. (2024). ECG-based data-driven solutions for diagnosis and prognosis of cardiovascular diseases: A systematic review. Computers in Biology and Medicine, 172, 108235. https://doi.org/10.1016/j.compbiomed.2024.108235
Morley, J., Machado, C. C. V., Burr, C., Cowls, J., Joshi, I., Taddeo, M., & Floridi, L. (2020). The ethics of AI in health care: A mapping review. Social Science & Medicine, 260, 113172. https://doi.org/10.1016/j.socscimed.2020.113172
Nayebirad, S., Hassanzadeh, A., Vahdani, A. M., Mohamadi, A., Forghani, S., Shafiee, A., & Masoudkabir, F. (2025). Comparison of machine learning models with conventional statistical methods for prediction of percutaneous coronary intervention outcomes: a systematic review and meta-analysis. In BMC Cardiovascular Disorders (Vol. 25, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s12872-025-04746-0
Olawade, D. B., Aderinto, N., Olatunji, G., Kokori, E., David-Olawade, A. C., & Hadi, M. (2024). Advancements and applications of Artificial Intelligence in cardiology: Current trends and future prospects. Journal of Medicine, Surgery, and Public Health, 3, 100109. https://doi.org/10.1016/j.glmedi.2024.100109
Ralapanawa, U., & Sivakanesan, R. (2021). Epidemiology and the Magnitude of Coronary Artery Disease and Acute Coronary Syndrome: A Narrative Review. Journal of Epidemiology and Global Health, 11(2), 169. https://doi.org/10.2991/jegh.k.201217.001
Rincón, L. M., Subirana, I., Pérez del Villar, C., Sánchez, P. L., Zamorano, J. L., Marrugat, J., & Elosua, R. (2023). Predictive capacity of a genetic risk score for coronary artery disease in assessing recurrences and cardiovascular mortality among patients with myocardial infarction. Frontiers in Cardiovascular Medicine, 10. https://doi.org/10.3389/fcvm.2023.1254066
Siala, H., & Wang, Y. (2022). SHIFTing artificial intelligence to be responsible in healthcare: A systematic review. Social Science & Medicine, 296, 114782. https://doi.org/10.1016/j.socscimed.2022.114782
Singh, M., Kumar, A., Khanna, N. N., Laird, J. R., Nicolaides, A., Faa, G., Johri, A. M., Mantella, L. E., Fernandes, J. F. E., Teji, J. S., Singh, N., Fouda, M. M., Singh, R., Sharma, A., Kitas, G., Rathore, V., Singh, I. M., Tadepalli, K., Al-Maini, M., … Suri, J. S. (2024). Artificial intelligence for cardiovascular disease risk assessment in personalised framework: a scoping review. EClinicalMedicine, 73, 102660. https://doi.org/10.1016/j.eclinm.2024.102660
Suri, J. S., Bhagawati, M., Paul, S., Protogeron, A., Sfikakis, P. P., Kitas, G. D., Khanna, N. N., Ruzsa, Z., Sharma, A. M., Saxena, S., Faa, G., Paraskevas, K. I., Laird, J. R., Johri, A. M., Saba, L., & Kalra, M. (2022). Understanding the bias in machine learning systems for cardiovascular disease risk assessment: The first of its kind review. Computers in Biology and Medicine, 142, 105204. https://doi.org/10.1016/j.compbiomed.2021.105204
Suri, J. S., Bhagawati, M., Paul, S., Protogerou, A. D., Sfikakis, P. P., Kitas, G. D., Khanna, N. N., Ruzsa, Z., Sharma, A. M., Saxena, S., Faa, G., Laird, J. R., Johri, A. M., Kalra, M. K., Paraskevas, K. I., & Saba, L. (2022). A Powerful Paradigm for Cardiovascular Risk Stratification Using Multiclass, Multi-Label, and Ensemble-Based Machine Learning Paradigms: A Narrative Review. In Diagnostics (Vol. 12, Issue 3). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/diagnostics12030722
Takahashi, K., Serruys, P. W., Fuster, V., Farkouh, M. E., Spertus, J. A., Cohen, D. J., Park, S.-J., Park, D.-W., Ahn, J.-M., Kappetein, A. P., Head, S. J., Thuijs, D. J., Onuma, Y., Kent, D. M., Steyerberg, E. W., & van Klaveren, D. (2020). Redevelopment and validation of the SYNTAX score II to individualise decision making between percutaneous and surgical revascularisation in patients with complex coronary artery disease: secondary analysis of the multicentre randomised controlled SYNTAXES trial with external cohort validation. The Lancet, 396(10260), 1399–1412. https://doi.org/10.1016/S0140-6736(20)32114-0
Teshale, A. B., Htun, H. L., Vered, M., Owen, A. J., & Freak-Poli, R. (2024). A Systematic Review of Artificial Intelligence Models for Time-to-Event Outcome Applied in Cardiovascular Disease Risk Prediction. In Journal of Medical Systems (Vol. 48, Issue 1). Springer. https://doi.org/10.1007/s10916-024-02087-7
Tse, G., Lee, Q., Chou, O. H. I., Chung, C. T., Lee, S., Chan, J. S. K., Li, G., Kaur, N., Roever, L., Liu, H., Liu, T., & Zhou, J. (2024). Healthcare Big Data in Hong Kong: Development and Implementation of Artificial Intelligence-Enhanced Predictive Models for Risk Stratification. Current Problems in Cardiology, 49(1), 102168. https://doi.org/10.1016/j.cpcardiol.2023.102168
Victor, G., Shishani, K., Vellone, E., & Froelicher, E. S. (2025). The Global Burden of Cardiovascular Disease in Adults. Journal of Cardiovascular Nursing. https://doi.org/10.1097/JCN.0000000000001200
Wang, X., Wang, J., Wang, W., Zhu, M., Guo, H., Ding, J., Sun, J., Zhu, D., Duan, Y., Chen, X., Zhang, P., Wu, Z., & He, K. (2022). Using artificial intelligence in the development of diagnostic models of coronary artery disease with imaging markers: A scoping review. In Frontiers in Cardiovascular Medicine (Vol. 9). Frontiers Media S.A. https://doi.org/10.3389/fcvm.2022.945451
Yazdani, A. N., Pletsch, M., Chorbajian, A., Zitser, D., Rai, V., & Agrawal, D. K. (2023). Biomarkers to monitor the prognosis, disease severity, and treatment efficacy in coronary artery disease. Expert Review of Cardiovascular Therapy, 21(10), 675–692. https://doi.org/10.1080/14779072.2023.2264779
Yun, H., Noh, N. I., & Lee, E. Y. (2022). Genetic risk scores used in cardiovascular disease prediction models: a systematic review. Reviews in Cardiovascular Medicine, 23(1). https://doi.org/10.31083/j.rcm2301008
Views:
31
Downloads:
21
Copyright (c) 2025 Natalia Kulicka, Kinga Knutelska, Tytus Tyralik, Maciej Karwat, Patrycja Jędrzejewska-Rzezak, Monika Czekalska, Aleksandra Winsyk, Joanna Węgrzecka, Paulina Gajniak, Klaudia Bilińska

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.