NEW PERSPECTIVES ON ACUTE MOUNTAIN SICKNESS: FROM PATHOPHYSIOLOGY TO PREVENTION AND TREATMENT – A REVIEW ARTICLE
Abstract
Purpose: The purpose of this paper is to present the physiological changes occurring in the human body with increasing altitude and decreasing barometric pressure, and to summarize current knowledge on high-altitude diseases, with particular emphasis on Acute Mountain Sickness (AMS). The article outlines the pathophysiological basis of its clinical manifestations, risk factors, diagnostic criteria, differentiation from other conditions, and methods of prevention and treatment. It also aims to raise awareness of high-altitude risks and promote safe practices during mountain travel. This work is intended as educational material for medical students, health professionals, travellers, and those beginning their high-altitude journeys.
Materials and methods: This review paper is based on data obtained from peer-reviewed scientific articles and reports published in reputable databases and journals, including PubMed, Taylor & Francis, CDC, SAGE Journals, ScienceDirect, and Practical Medicine, as well as Modern Management Review, The American Journal of Medicine, PLOS One, and High Altitude Medicine & Biology. The analysis also draws on the official position of the UIAA Medical Commission. Clinical studies, reviews, guidelines, and reports on high-altitude diseases published between 2010 and 2025 in English or Polish were included.
Conclusions: Acute mountain sickness arises from inadequate acclimatization to high-altitude hypoxia. Key risk factors include rapid ascent and prior AMS episodes. Gradual acclimatization is the most effective preventive measure, while pharmacological support may aid high-risk individuals. Early symptom recognition and prompt intervention are essential to prevent severe, potentially life-threatening complications, underscoring the importance of understanding human physiological limits and adaptation in extreme environments.
References
Poudel, S., Wagle, L., Ghale, M., Aryal, T. P., Pokharel, S., & Adhikari, B. (2025). Risk factors associated with high altitude sickness among travelers: A case control study in Himalaya district of Nepal. PLOS Global Public Health, 5, e0004241. https://doi.org/10.1371/journal.pgph.0004241
Lamichhane, S., Ghimire, I., Pokhrel, A., Sharma, N. R., & Acharya, S. K. (2022). High-altitude illness: Menace in Himalayas of Nepal. Annals of Medicine and Surgery, 81, 104494. https://doi.org/10.1016/j.amsu.2022.104494
Gonggalanzi, Labasangzhu, Nafstad, P., Stigum, H., Wu, T., Haldorsen, Ø. D., Ommundsen, K., & Bjertness, E. (2016). Acute mountain sickness among tourists visiting the high-altitude city of Lhasa at 3,658 m above sea level: A cross-sectional study. Archives of Public Health, 74. https://doi.org/10.1186/s13690-016-0134-z
Salazar, H., Swanson, J., Mozo, K., White, A. C., & Cabada, M. M. (2012). Acute mountain sickness impact among travelers to Cusco, Peru. Journal of Travel Medicine, 19, 220–225. https://doi.org/10.1111/j.1708-8305.2012.00606.x
Centers for Disease Control and Prevention. (2025). High-altitude travel and altitude illness. In Yellow Book. https://www.cdc.gov/yellow-book/hcp/environmental-hazards-risks/high-altitude-travel-and-altitude-illness.html
Fiore, D. C., Hall, S., & Shoja, P. (2010). Altitude illness: Risk factors, prevention, presentation, and treatment. American Family Physician, 82, 1103–1110.
Shrestha, P., Pun, M., & Basnyat, B. (2014). High altitude pulmonary edema (HAPE) in a Himalayan trekker: A case report. Extreme Physiology & Medicine, 3, 6. https://doi.org/10.1186/2046-7648-3-6
Sridharan, K., & Sivaramakrishnan, G. (2017). Pharmacological interventions for preventing acute mountain sickness: A network meta-analysis and trial sequential analysis of randomized clinical trials. Annals of Medicine, 50, 147–155. https://doi.org/10.1080/07853890.2017.1407034
Sharma, S. K., Gralla, J., Gonzalez Ordonez, J., Hurtado, M. D., Swenson, E. R., Schoene, R. B., Pando Kelly, J., Callacondo, D., Rivard, C. J., Roncal-Jimenez, C. A., et al. (2017). Acetazolamide and N-acetylcysteine in the treatment of chronic mountain sickness (Monge’s disease). Respiratory Physiology & Neurobiology, 246, 1–8. https://doi.org/10.1016/j.resp.2017.07.005
Hartman-Ksycińska, A., Kluz-Zawadzka, J., & Lewandowski, B. (2016). High altitude illness. Przegląd Epidemiologiczny, 70, 490–499.
Luks, A. M., Swenson, E. R., & Bärtsch, P. (2017). Acute high-altitude sickness. European Respiratory Review, 26, 160096. https://doi.org/10.1183/16000617.0096-2016
Aksel, G., Çorbacıoğlu, Ş. K., & Özen, C. (2019). High-altitude illness: Management approach. Turkish Journal of Emergency Medicine, 19, 121–126. https://doi.org/10.1016/j.tjem.2019.09.002
Richalet, J.-P., Hermand, E., & Lhuissier, F. J. (2023). Cardiovascular physiology and pathophysiology at high altitude. Nature Reviews Cardiology, 21, 1–14. https://doi.org/10.1038/s41569-023-00924-9
Savioli, G., Ceresa, I. F., Gori, G., Fumoso, F., Gri, N., Floris, V., Varesi, A., Martuscelli, E., Marchisio, S., Longhitano, Y., et al. (2022). Pathophysiology and therapy of high-altitude sickness: Practical approach in emergency and critical care. Journal of Clinical Medicine, 11, 3937. https://doi.org/10.3390/jcm11143937
Li, Y., Zhang, Y., & Zhang, Y. (2018). Research advances in pathogenesis and prophylactic measures of acute high altitude illness. Respiratory Medicine, 145, 145–152. https://doi.org/10.1016/j.rmed.2018.11.004
Moore, L. G. (2017). Measuring high-altitude adaptation. Journal of Applied Physiology, 123, 1371–1385. https://doi.org/10.1152/japplphysiol.00321.2017
Mallet, R. T., Burtscher, J., Pialoux, V., Pasha, Q., Ahmad, Y., Millet, G. P., & Burtscher, M. (2023). Molecular mechanisms of high-altitude acclimatization. International Journal of Molecular Sciences, 24, 1698. https://doi.org/10.3390/ijms24021698
Ulloa, N. A., & Cook, J. (2023). Altitude-induced pulmonary hypertension. In StatPearls. NIH. https://www.ncbi.nlm.nih.gov/books/NBK555925
Bilo, G., Caravita, S., Torlasco, C., & Parati, G. (2019). Blood pressure at high altitude: Physiology and clinical implications. Kardiologia Polska, 77, 596–603. https://doi.org/10.33963/kp.14832
Burtscher, M., Hefti, U., & Hefti, J. P. (2021). High-altitude illnesses: Old stories and new insights into the pathophysiology, treatment and prevention. Sports Medicine and Health Science, 3. https://doi.org/10.1016/j.smhs.2021.04.001
Wang, B., Chen, S., Song, J., Huang, D., & Xiao, G. (2024). Recent advances in predicting acute mountain sickness: From multidimensional cohort studies to cutting-edge model applications. Frontiers in Physiology, 15. https://doi.org/10.3389/fphys.2024.1397280
Berger, M. M., Sareban, M., & Bärtsch, P. (2020). Acute mountain sickness: Do different time courses point to different pathophysiological mechanisms? Journal of Applied Physiology, 128, 952–959. https://doi.org/10.1152/japplphysiol.00305.2019
Frank, F., Kaltseis, K., Filippi, V., & Broessner, G. (2022). Hypoxia-related mechanisms inducing acute mountain sickness and migraine. International Journal of Computer Assisted Radiology and Surgery, 13. https://doi.org/10.3389/fphys.2022.994469
Turner, R. E. F., Gatterer, H., Falla, M., & Lawley, J. S. (2021). High altitude cerebral edema – its own entity or end-stage acute mountain sickness? Journal of Applied Physiology, 131. https://doi.org/10.1152/japplphysiol.00861.2019
Liu, B., Chen, J., Zhang, L., Gao, Y., Cui, J., Zhang, E., Xu, G., Liang, Y., Liang, Y., Wang, J., et al. (2017). IL-10 dysregulation in acute mountain sickness revealed by transcriptome analysis. Frontiers in Immunology, 8. https://doi.org/10.3389/fimmu.2017.00628
Prince, T. S., Thurman, J., & Huebner, K. (2020). Acute mountain sickness. In StatPearls. NIH. https://www.ncbi.nlm.nih.gov/books/NBK430716/
Pena, E., El Alam, S., Siques, P., & Brito, J. (2022). Oxidative stress and diseases associated with high-altitude exposure. Antioxidants, 11, 267. https://doi.org/10.3390/antiox11020267
Wu, Z., Wang, Y., Gao, R., Chen, J., Chen, Y., Li, M., & Gao, Y. (2024). Potential therapeutic effects of traditional Chinese medicine in acute mountain sickness: Pathogenesis, mechanisms and future directions. Frontiers in Pharmacology, 15. https://doi.org/10.3389/fphar.2024.1393209
McKenna, Z. J., Pereira, F. G., Gillum, T. L., Amorim, F. T., & Mermier, C. M. (2022). High-altitude exposures and intestinal barrier dysfunction. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 322, R192–R203. https://doi.org/10.1152/ajpregu.00270.2021
Lee, B. J., & Thake, C. D. (2017). Heat and hypoxic acclimation increase monocyte heat shock protein 72 but do not attenuate inflammation following hypoxic exercise. Frontiers in Physiology, 8. https://doi.org/10.3389/fphys.2017.00811
Hill, G. W., Gillum, T. L., Lee, B. J., Romano, P. A., Schall, Z. J., Hamilton, A. M., & Kuennen, M. R. (2020). Prolonged treadmill running in normobaric hypoxia causes gastrointestinal barrier permeability and elevates circulating levels of pro- and anti-inflammatory cytokines. Applied Physiology, Nutrition, and Metabolism, 45, 376–386. https://doi.org/10.1139/apnm-2019-0378
Boos, C. J., Bass, M., O’Hara, J. P., Vincent, E., Mellor, A., Sevier, L., Abdul-Razakq, H., Cooke, M., & Barlow, M. (2018). The relationship between anxiety and acute mountain sickness. In M. Burtscher (Ed.), PLOS ONE, 13, e0197147. https://doi.org/10.1371/journal.pone.0197147
Wu, Y., Zhang, C., Chen, Y., & Luo, Y.-J. (2018). Association between acute mountain sickness (AMS) and age: A meta-analysis. Military Medical Research, 5. https://doi.org/10.1186/s40779-018-0161-x
Roach, R. C., Hackett, P. H., Oelz, O., Bärtsch, P., Luks, A. M., MacInnis, M. J., Baillie, J. K., Achatz, E., Albert, E., Andrews, J. S., et al. (2018). The 2018 Lake Louise Acute Mountain Sickness score. High Altitude Medicine & Biology, 19, 4–6. https://doi.org/10.1089/ham.2017.0164
Baniya, S., Holden, C., & Basnyat, B. (2017). Reentry high altitude pulmonary edema in the Himalayas. High Altitude Medicine & Biology, 18, 425–427. https://doi.org/10.1089/ham.2017.0088
Horiuchi, M., Watanabe, M., Mitsui, S., & Uno, T. (2021). Does change in barometric pressure per given time at high altitude influence symptoms of acute mountain sickness on Mount Fuji? A pilot study. Journal of Physiological Anthropology, 40. https://doi.org/10.1186/s40101-021-00256-y
Figueiredo, P. S., Sils, I. V., Staab, J. E., Fulco, C. S., Muza, S. R., & Beidleman, B. A. (2022). Acute mountain sickness and sleep disturbances differentially influence cognition and mood during rapid ascent to 3000 and 4050 m. Physiological Reports, 10. https://doi.org/10.14814/phy2.15175
Luks, A. M., Beidleman, B. A., Freer, L., Grissom, C. K., Keyes, L. E., McIntosh, S. E., Rodway, G. W., Schoene, R. B., Zafren, K., & Hackett, P. H. (2023). Wilderness Medical Society clinical practice guidelines for the prevention, diagnosis, and treatment of acute altitude illness: 2024 update. Wilderness & Environmental Medicine. https://doi.org/10.1016/j.wem.2023.05.013
Stellingwerff, T., Peeling, P., Garvican-Lewis, L. A., Hall, R., Koivisto, A. E., Heikura, I. A., & Burke, L. M. (2019). Nutrition and altitude: Strategies to enhance adaptation, improve performance and maintain health: A narrative review. Sports Medicine, 49, 169–184. https://doi.org/10.1007/s40279-019-01159-w
Staab, J. E., Muza, S. R., Fulco, C. S., Andrew, S. P., & Beidleman, B. A. (2021). Impact of 2 days of staging at 2500–4300 m on sleep quality and quantity following subsequent exposure to 4300 m. Physiological Reports, 9. https://doi.org/10.14814/phy2.15063
Shlim, D. R. (2020). The use of acetazolamide for the prevention of high-altitude illness. Journal of Travel Medicine, 27. https://doi.org/10.1093/jtm/taz106
Farzam, K., & Abdullah, M. (2023). Acetazolamide. In StatPearls. NIH. https://www.ncbi.nlm.nih.gov/books/NBK532282/
Leaf, D. E., & Goldfarb, D. S. (2007). Mechanisms of action of acetazolamide in the prophylaxis and treatment of acute mountain sickness. Journal of Applied Physiology, 102, 1313–1322. https://doi.org/10.1152/japplphysiol.01572.2005
Forwand, S. A., Landowne, M., & Follansbee, J. N. (1968). Effect of acetazolamide on acute mountain sickness. New England Journal of Medicine, 279, 839–845. https://doi.org/10.1056/nejm196810172791601
Basnyat, B., Gertsch, J. H., Holck, P. S., Johnson, E. W., Luks, A. M., Donham, B. P., Fleischman, R. J., Gowder, D. W., Hawksworth, J. S., Jensen, B. T., et al. (2006). Acetazolamide 125 mg BD is not significantly different from 375 mg BD in the prevention of acute mountain sickness: The prophylactic acetazolamide dosage comparison for efficacy (PACE) trial. High Altitude Medicine & Biology, 7, 17–27. https://doi.org/10.1089/ham.2006.7.17
Grissom, C. K., Roach, R. C., & Sarnquist, F. H. (1992). Acetazolamide in the treatment of acute mountain sickness: Clinical efficacy and effect on gas exchange. Annals of Internal Medicine, 116, 461–465. https://doi.org/10.7326/0003-4819-116-6-461
Hilty, M. P., Zügel, S., Schoeb, M., Auinger, K., Dehnert, C., & Maggiorini, M. (2016). Soluble urokinase-type plasminogen activator receptor plasma concentration may predict susceptibility to high altitude pulmonary edema. Mediators of Inflammation, 2016, 1–8. https://doi.org/10.1155/2016/1942460
Kumar, R., Chanana, N., Sharma, K., Palmo, T., Lee, M., Mishra, A., Nolan, K., Fonseca, D. C., Mickael, C., Gupta, M., et al. (2023). Dexamethasone prophylaxis protects from acute high-altitude illness by modifying the peripheral blood mononuclear cell inflammatory transcriptome. Bioscience Reports, 43. https://doi.org/10.1042/bsr20231561
Bernhard, W. N., Schalick, L. M., Delaney, P. A., Bernhard, T. M., & Barnas, G. M. (1998). Acetazolamide plus low-dose dexamethasone is better than acetazolamide alone to ameliorate symptoms of acute mountain sickness. Aviation, Space, and Environmental Medicine, 69, 883–886.
Li, H.-J., Zheng, C.-R., Chen, G.-Z., Qin, J., Zhang, J.-H., Yu, J., Zhang, E.-H., & Huang, L. (2016). Budesonide, but not dexamethasone, blunted the response of aldosterone to renin elevation by suppressing angiotensin converting enzyme upon high-altitude exposure. Journal of the Renin-Angiotensin-Aldosterone System, 17, 1470320316653867. https://doi.org/10.1177/1470320316653867
Zheng, C.-R., Chen, G.-Z., Yu, J., Qin, J., Song, P., Bian, S.-Z., Xu, B.-D., Tang, X.-G., Huang, Y.-T., Liang, X., et al. (2014). Inhaled budesonide and oral dexamethasone prevent acute mountain sickness. The American Journal of Medicine, 127, 1001–1009.e2. https://doi.org/10.1016/j.amjmed.2014.04.012
Swenson, E. R. (2016). Pharmacology of acute mountain sickness: Old drugs and newer thinking. Journal of Applied Physiology, 120, 204–215. https://doi.org/10.1152/japplphysiol.00443.2015
Keller, H.-R., Maggiorini, M., Bartsch, P., & Oelz, O. (1995). Simulated descent vs dexamethasone in treatment of acute mountain sickness: A randomised trial. BMJ, 310, 1232–1235. https://doi.org/10.1136/bmj.310.6989.1232
Luks, A. M., Beidleman, B. A., Freer, L., Grissom, C. K., Keyes, L. E., McIntosh, S. E., Rodway, G. W., Schoene, R. B., Zafren, K., & Hackett, P. H. (2023). Wilderness Medical Society clinical practice guidelines for the prevention, diagnosis, and treatment of acute altitude illness: 2024 update. Wilderness & Environmental Medicine. https://doi.org/10.1016/j.wem.2023.05.013
Flaherty, G. T. (2014). Under pressure: Facilitating the emergency use of portable hyperbaric chambers at altitude. Travel Medicine and Infectious Disease, 12, 420–421. https://doi.org/10.1016/j.tmaid.2014.09.001
Jodłowski, M., & Majer, J. (2012). The International Mountaineering and Climbing Federation Union Internationale des Associations d’Alpinisme [UIAA] [PDF]. https://pza.org.pl/wp-content/uploads/download/1842219.pdf
Kępińska, M., & Bajda, M. (2010). Niebezpieczeństwa związane z przebywaniem na dużej wysokości – ostra choroba wysokogórska. Farmacja Polska, 2010, 13–18.
Cauchy, E., Leal, S., & Magnan, M.-A. (2014). Portable hyperbaric chamber and management of hypothermia and frostbite: An evident utilization. High Altitude Medicine & Biology, 15, 95–96. https://doi.org/10.1089/ham.2013.1095
Szymczak, R., Wroczyńska, A., & Ryn, Z. (2025). Ostra choroba wysokościowa. MP.pl. https://www.mp.pl/interna/chapter/B01.XXI.4
Küpper, T., Gieseler, U., Angelini, C., Hillebrandt, D., & Milledge, J. (2012). The International Mountaineering and Climbing Federation Union Internationale des Associations d’Alpinisme [UIAA] [PDF]. https://theuiaa.org/documents/mountainmedicine/Polish_UIAA_MedCom_Rec_No_2_AMS_HAPE_HACE_2012_V3-2.pdf
Butler, G. J., Al-Waili, N. S., Passano, D. V., Ramos, J. N., Chavarri, J., Beale, J., Allen, M., Lee, B. Y., Urteaga, G., & Salom, K. (2011). Altitude mountain sickness among tourist populations: A review and pathophysiology supporting management with hyperbaric oxygen. Journal of Medical Engineering & Technology, 35, 197–207. https://doi.org/10.3109/03091902.2010.497890
Carod-Artal, F. J. (2014). High-altitude headache and acute mountain sickness. Neurología (English Edition, 29, 533–540. https://doi.org/10.1016/j.nrleng.2012.04.021
Pun, M. (2021). Rapid ascent to high altitude: Acetazolamide or ibuprofen? The American Journal of Medicine, 134, e230. https://doi.org/10.1016/j.amjmed.2020.03.023
Xiong, J., Lu, H., Wang, R., & Jia, Z. (2017). Efficacy of ibuprofen on prevention of high altitude headache: A systematic review and meta-analysis. In R. K. Hills (Ed.), PLOS ONE, 12, e0179788. https://doi.org/10.1371/journal.pone.0179788
Zafren, K. (2012). Does ibuprofen prevent acute mountain sickness? Wilderness & Environmental Medicine, 23, 297–299. https://doi.org/10.1016/j.wem.2012.08.012
Views:
44
Downloads:
15
Copyright (c) 2025 Jakub Sapikowski, Agata Juchniewicz, Maria Janiszewska, Iga Kuba, Julita Jagodzińska, Mikołaj Góralczyk, Martyna Grześkowiak, Jakub Idziński

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

