THE INTERPLAY BETWEEN DIET AND HORMONAL REGULATION: A NARRATIVE REVIEW
Abstract
Diet is one of the key external factors that can modify hormonal activity across the major endocrine axes and affect metabolic and appetite-regulating hormones including insulin, leptin, ghrelin, and cortisol. A literature search conducted between October and November 2025 using PubMed, Scopus, Web of Science, and Google Scholar identified peer-reviewed studies examining the effects of caloric restriction, macronutrient distribution, glycemic load, micronutrient intake, and structured dietary interventions on endocrine function. The evidence shows that diets high in glycemic load, saturated fats, and low in fiber can disrupt insulin sensitivity, alter leptin and ghrelin signaling, affect cortisol responses, and contribute to thyroid and reproductive hormone imbalances. In contrast, Mediterranean-style and low-glycemic diets, time-restricted feeding, and adequate intake of iodine, selenium, and zinc appear to support metabolic health and more stable hormonal activity. Diet also plays a therapeutic role in endocrine-related conditions including polycystic ovary syndrome, Hashimoto’s disease, acne vulgaris, endometriosis, and thyroiditis, with improvements seen in inflammation, insulin regulation, and hormonal homeostasis. Overall, the review emphasizes that diet can both disturb and restore endocrine balance. Well-structured, nutrient-dense dietary strategies may serve not only as preventive measures but also as valuable tools in supporting long-term hormonal health.
References
Hiller-Sturmhöfel, S., & Bartke, A. (1998). The endocrine system: an overview. Alcohol health and research world, 22(3), 153–164.
Skoracka, K., Hryhorowicz, S., Schulz, P., Zawada, A., Ratajczak-Pawłowska, A. E., Rychter, A. M., Słomski, R., Dobrowolska, A., & Krela-Kaźmierczak, I. (2025). The role of leptin and ghrelin in the regulation of appetite in obesity. Peptides, 186, 171367. https://doi.org/10.1016/j.peptides.2025.171367
Fock, K. M., & Khoo, J. (2013). Diet and exercise in management of obesity and overweight. Journal of gastroenterology and hepatology, 28 Suppl 4, 59–63. https://doi.org/10.1111/jgh.12407
Barraza-Ortega, E., Gómez-Gil, B., García-Gasca, T., Lizárraga, D., Díaz, N., & García-Gasca, A. (2025). The Impact of Lifestyle on Reproductive Health: Microbial Complexity, Hormonal Dysfunction, and Pregnancy Outcomes. International journal of molecular sciences, 26(17), 8574. https://doi.org/10.3390/ijms26178574
Papakonstantinou, E., Oikonomou, C., Nychas, G., & Dimitriadis, G. D. (2022). Effects of Diet, Lifestyle, Chrononutrition and Alternative Dietary Interventions on Postprandial Glycemia and Insulin Resistance. Nutrients, 14(4), 823. https://doi.org/10.3390/nu14040823
Schwingshackl, L., Chaimani, A., Hoffmann, G., Schwedhelm, C., & Boeing, H. (2018). A network meta-analysis on the comparative efficacy of different dietary approaches on glycaemic control in patients with type 2 diabetes mellitus. European journal of epidemiology, 33(2), 157–170. https://doi.org/10.1007/s10654-017-0352-x
Kim, B. H., Joo, Y., Kim, M. S., Choe, H. K., Tong, Q., & Kwon, O. (2021). Effects of Intermittent Fasting on the Circulating Levels and Circadian Rhythms of Hormones. Endocrinology and metabolism (Seoul, Korea), 36(4), 745–756. https://doi.org/10.3803/EnM.2021.405
Izquierdo, A. G., Crujeiras, A. B., Casanueva, F. F., & Carreira, M. C. (2019). Leptin, Obesity, and Leptin Resistance: Where Are We 25 Years Later?. Nutrients, 11(11), 2704. https://doi.org/10.3390/nu11112704
Mars, M., de Graaf, C., de Groot, L. C., & Kok, F. J. (2005). Decreases in fasting leptin and insulin concentrations after acute energy restriction and subsequent compensation in food intake. The American journal of clinical nutrition, 81(3), 570–577. https://doi.org/10.1093/ajcn/81.3.570
Moro, T., Tinsley, G., Bianco, A., Marcolin, G., Pacelli, Q. F., Battaglia, G., Palma, A., Gentil, P., Neri, M., & Paoli, A. (2016). Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. Journal of translational medicine, 14(1), 290. https://doi.org/10.1186/s12967-016-1044-0
Parr, E. B., Devlin, B. L., Radford, B. E., & Hawley, J. A. (2020). A Delayed Morning and Earlier Evening Time-Restricted Feeding Protocol for Improving Glycemic Control and Dietary Adherence in Men with Overweight/Obesity: A Randomized Controlled Trial. Nutrients, 12(2), 505. https://doi.org/10.3390/nu12020505
Date, Y., Kojima, M., Hosoda, H., Sawaguchi, A., Mondal, M. S., Suganuma, T., Matsukura, S., Kangawa, K., & Nakazato, M. (2000). Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology, 141(11), 4255–4261. https://doi.org/10.1210/endo.141.11.7757
Bodosi, B., Gardi, J., Hajdu, I., Szentirmai, E., Obal, F., Jr, & Krueger, J. M. (2004). Rhythms of ghrelin, leptin, and sleep in rats: effects of the normal diurnal cycle, restricted feeding, and sleep deprivation. American journal of physiology. Regulatory, integrative and comparative physiology, 287(5), R1071–R1079. https://doi.org/10.1152/ajpregu.00294.2004
Timmermans, S., Souffriau, J., & Libert, C. (2019). A General Introduction to Glucocorticoid Biology. Frontiers in immunology, 10, 1545. https://doi.org/10.3389/fimmu.2019.01545
Dong, T., Guo, M., Zhang, P., Sun, G., & Chen, B. (2020). The effects of low-carbohydrate diets on cardiovascular risk factors: A meta-analysis. PloS one, 15(1), e0225348. https://doi.org/10.1371/journal.pone.0225348
Whittaker, J., & Harris, M. (2022). Low-carbohydrate diets and men's cortisol and testosterone: Systematic review and meta-analysis. Nutrition and health, 28(4), 543–554. https://doi.org/10.1177/02601060221083079
Shively, C. A., Appt, S. E., Chen, H., Day, S. M., Frye, B. M., Shaltout, H. A., Silverstein-Metzler, M. G., Snyder-Mackler, N., Uberseder, B., Vitolins, M. Z., & Register, T. C. (2020). Mediterranean diet, stress resilience, and aging in nonhuman primates. Neurobiology of stress, 13, 100254. https://doi.org/10.1016/j.ynstr.2020.100254
Carvalho, K. M. B., Ronca, D. B., Michels, N., Huybrechts, I., Cuenca-Garcia, M., Marcos, A., Molnár, D., Dallongeville, J., Manios, Y., Schaan, B. D., Moreno, L., de Henauw, S., & Carvalho, L. A. (2018). Does the Mediterranean Diet Protect against Stress-Induced Inflammatory Activation in European Adolescents? The HELENA Study. Nutrients, 10(11), 1770. https://doi.org/10.3390/nu10111770
Beltrán-Debón, R., Rodríguez-Gallego, E., Fernández-Arroyo, S., Senan-Campos, O., Massucci, F. A., Hernández-Aguilera, A., Sales-Pardo, M., Guimerà, R., Camps, J., Menendez, J. A., & Joven, J. (2015). The acute impact of polyphenols from Hibiscus sabdariffa in metabolic homeostasis: an approach combining metabolomics and gene-expression analyses. Food & function, 6(9), 2957–2966. https://doi.org/10.1039/c5fo00696a
Alufer, L., Tsaban, G., Rinott, E., Kaplan, A., Meir, A. Y., Zelicha, H., Ceglarek, U., Isermann, B., Blüher, M., Stumvoll, M., Stampfer, M. J., & Shai, I. (2023). Long-term green-Mediterranean diet may favor fasting morning cortisol stress hormone; the DIRECT-PLUS clinical trial. Frontiers in endocrinology, 14, 1243910. https://doi.org/10.3389/fendo.2023.1243910
Shulhai, A. M., Rotondo, R., Petraroli, M., Patianna, V., Predieri, B., Iughetti, L., Esposito, S., & Street, M. E. (2024). The Role of Nutrition on Thyroid Function. Nutrients, 16(15), 2496. https://doi.org/10.3390/nu16152496
Weiss, E. P., Villareal, D. T., Racette, S. B., Steger-May, K., Premachandra, B. N., Klein, S., & Fontana, L. (2008). Caloric restriction but not exercise-induced reductions in fat mass decrease plasma triiodothyronine concentrations: a randomized controlled trial. Rejuvenation research, 11(3), 605–609. https://doi.org/10.1089/rej.2007.0622
Fontana, L., Klein, S., Holloszy, J. O., & Premachandra, B. N. (2006). Effect of long-term calorie restriction with adequate protein and micronutrients on thyroid hormones. The Journal of clinical endocrinology and metabolism, 91(8), 3232–3235. https://doi.org/10.1210/jc.2006-0328
Chapela, S. P., Simancas-Racines, A., Ceriani, F., Martinuzzi, A. L. N., Russo, M. P., Zambrano, A. K., Simancas-Racines, D., Verde, L., Muscogiuri, G., Katsanos, C. S., Frias-Toral, E., & Barrea, L. (2024). Obesity and Obesity-Related Thyroid Dysfunction: Any Potential Role for the Very Low-Calorie Ketogenic Diet (VLCKD)?. Current nutrition reports, 13(2), 194–213. https://doi.org/10.1007/s13668-024-00528-w
Liu, G., Liang, L., Bray, G. A., Qi, L., Hu, F. B., Rood, J., Sacks, F. M., & Sun, Q. (2017). Thyroid hormones and changes in body weight and metabolic parameters in response to weight loss diets: the POUNDS LOST trial. International journal of obesity (2005), 41(6), 878–886. https://doi.org/10.1038/ijo.2017.28
Amorim, T., Khiyami, A., Latif, T., & Fazeli, P. K. (2023). Neuroendocrine adaptations to starvation. Psychoneuroendocrinology, 157, 106365. https://doi.org/10.1016/j.psyneuen.2023.106365
Walczak, K., & Sieminska, L. (2021). Obesity and Thyroid Axis. International Journal of Environmental Research and Public Health, 18(18), 9434. https://doi.org/10.3390/ijerph18189434
Kazemi, M., Jarrett, B. Y., Vanden Brink, H., Lin, A. W., Hoeger, K. M., Spandorfer, S. D., & Lujan, M. E. (2020). Obesity, Insulin Resistance, and Hyperandrogenism Mediate the Link between Poor Diet Quality and Ovarian Dysmorphology in Reproductive-Aged Women. Nutrients, 12(7), 1953. https://doi.org/10.3390/nu12071953
Reed, K. E., Camargo, J., Hamilton-Reeves, J., Kurzer, M., & Messina, M. (2021). Neither soy nor isoflavone intake affects male reproductive hormones: An expanded and updated meta-analysis of clinical studies. Reproductive toxicology (Elmsford, N.Y.), 100, 60–67. https://doi.org/10.1016/j.reprotox.2020.12.019
Whittaker J. (2023). High-protein diets and testosterone. Nutrition and health, 29(2), 185–191. https://doi.org/10.1177/02601060221132922
Szczuko, M., Kikut, J., Szczuko, U., Szydłowska, I., Nawrocka-Rutkowska, J., Ziętek, M., Verbanac, D., & Saso, L. (2021). Nutrition Strategy and Life Style in Polycystic Ovary Syndrome-Narrative Review. Nutrients, 13(7), 2452. https://doi.org/10.3390/nu13072452
Osowiecka, K., & Myszkowska-Ryciak, J. (2023). The Influence of Nutritional Intervention in the Treatment of Hashimoto's Thyroiditis-A Systematic Review. Nutrients, 15(4), 1041. https://doi.org/10.3390/nu15041041
Ryguła, I., Pikiewicz, W., & Kaminiów, K. (2024). Impact of Diet and Nutrition in Patients with Acne Vulgaris. Nutrients, 16(10), 1476. https://doi.org/10.3390/nu16101476
Abulughod, N., Valakas, S., & El-Assaad, F. (2024). Dietary and Nutritional Interventions for the Management of Endometriosis. Nutrients, 16(23), 3988. https://doi.org/10.3390/nu16233988
Piticchio, T., Frasca, F., Malandrino, P., Trimboli, P., Carrubba, N., Tumminia, A., Vinciguerra, F., & Frittitta, L. (2023). Effect of gluten-free diet on autoimmune thyroiditis progression in patients with no symptoms or histology of celiac disease: a meta-analysis. Frontiers in endocrinology, 14, 1200372. https://doi.org/10.3389/fendo.2023.1200372
Copyright (c) 2025 Ewa Jagodzińska, Zuzanna Jabłońska, Maja Jabłońska, Julia Kamińska, Joanna Zygadło, Wiktor Milewczyk

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

