ROLE OF HIF-1 SIGNALING PATHWAY IN CELLULAR ADAPTATION TO HYPOXIA

Keywords: Hypoxia-inducible Factor; HIF Signaling Pathway; NF-κB Signaling Pathway, Cellular Adaptation to Hypoxia, Inflammatory Response

Abstract

Hypoxia accompanying chronic inflammatory diseases leads to dysregulation of cells’ homeostasis, causes energy deficits and intensifies inflammatory processes. Hypoxia-inducible factors (HIFs) are the central regulators of the response to hypoxia, enabling metabolic and functional adaptation of immune cells by altering gene expression. HIF-1α and HIF-2α modulate the lifespan, differentiation, priming and activation of neutrophils, macrophages, lymphocytes, and dendritic cells- playing a key role in influencing the balance between proinflammatory and reparative responses. Interactions between HIF and NF-κB pathways regulate hypoxic and inflammatory signaling, and as a result determine course, severity and treatment efficacy of many chronic diseases. Those two pathways are capable of influencing each other in a manner of negative feedback-loop. Understanding the mechanisms of this regulation opens up new therapeutic perspectives in the treatment of pulmonary diseases associated with hypoxia and inflammation, and a hypothetical possibility to  slow down the ratio at which chronic inflammatory response contributes to deterioration of patients’ quality of life.

References

Choudhry, H., & Harris, A. L. (2018). Advances in Hypoxia-Inducible Factor Biology. Cell metabolism, 27(2), 281–298. https://doi.org/10.1016/j.cmet.2017.10.005

Semenza G. L. (2014). Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annual review of pathology, 9, 47–71. https://doi.org/10.1146/annurev-pathol-012513-104720

Bartels, K., Grenz, A., & Eltzschig, H. K. (2013). Hypoxia and inflammation are two sides of the same coin. Proceedings of the National Academy of Sciences of the United States of America, 110(46), 18351–18352. https://doi.org/10.1073/pnas.1318345110

Palazon, A., Goldrath, A. W., Nizet, V., & Johnson, R. S. (2014). HIF transcription factors, inflammation, and immunity. Immunity, 41(4), 518–528. https://doi.org/10.1016/j.immuni.2014.09.008

Taylor, C. T., & Colgan, S. P. (2017). Regulation of immunity and inflammation by hypoxia in immunological niches. Nature reviews. Immunology, 17(12), 774–785. https://doi.org/10.1038/nri.2017.103

Dvornikova, K. A., Platonova, O. N., & Bystrova, E. Y. (2023). Hypoxia and Intestinal Inflammation: Common Molecular Mechanisms and Signaling Pathways. International journal of molecular sciences, 24(3), 2425. https://doi.org/10.3390/ijms24032425

Sitkovsky, M., & Lukashev, D. (2005). Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors. Nature reviews. Immunology, 5(9), 712–721. https://doi.org/10.1038/nri1685

Kaelin, W. G., Jr, & Ratcliffe, P. J. (2008). Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Molecular cell, 30(4), 393–402. https://doi.org/10.1016/j.molcel.2008.04.009

Nobel Prize in Physiology or Medicine 2019. The Nobel Assembly, Karolinska Institutet.

Keith, B., Johnson, R. S., & Simon, M. C. (2011). HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nature reviews. Cancer, 12(1), 9–22. https://doi.org/10.1038/nrc3183

Semenza G. L. (2012). Hypoxia-inducible factors in physiology and medicine. Cell, 148(3), 399–408. https://doi.org/10.1016/j.cell.2012.01.021

Corrado, C., & Fontana, S. (2020). Hypoxia and HIF Signaling: One Axis with Divergent Effects. International Journal of Molecular Sciences, 21(16), 5611. https://doi.org/10.3390/ijms21165611

Schofield, C. J., & Ratcliffe, P. J. (2004). Oxygen sensing by HIF hydroxylases. Nature reviews. Molecular cell biology, 5(5), 343–354. https://doi.org/10.1038/nrm1366

Wenger, R. H., Stiehl, D. P., & Camenisch, G. (2005). Integration of oxygen signaling at the consensus HRE. Science's STKE : signal transduction knowledge environment, 2005(306), re12. https://doi.org/10.1126/stke.3062005re12

Rius, J., Guma, M., Schachtrup, C., Akassoglou, K., Zinkernagel, A. S., Nizet, V., Johnson, R. S., Haddad, G. G., & Karin, M. (2008). NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature, 453(7196), 807–811. https://doi.org/10.1038/nature06905

van Uden, P., Kenneth, N. S., & Rocha, S. (2008). Regulation of hypoxia-inducible factor-1alpha by NF-kappaB. The Biochemical journal, 412(3), 477–484. https://doi.org/10.1042/BJ20080476

Cummins, E. P., Berra, E., Comerford, K. M., Ginouves, A., Fitzgerald, K. T., Seeballuck, F., Godson, C., Nielsen, J. E., Moynagh, P., Pouyssegur, J., & Taylor, C. T. (2006). Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18154–18159. https://doi.org/10.1073/pnas.0602235103

Barnes P. J. (2016). Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. The Journal of allergy and clinical immunology, 138(1), 16–27. https://doi.org/10.1016/j.jaci.2016.05.011

Titova, O. N., Kuzubova, O. N., Lebedeva, E. S., Surkova, E. A., Preobrazhenskaya, T. N., & Dvorakovskaya, I. V. (2018). Anti-inflammatory and regenerative effects of hypoxic signaling inhibition in a model of COPD. PULMONOLOGIYA, 28(2), 169-176..

Cramer, T., Yamanishi, Y., Clausen, B. E., Förster, I., Pawlinski, R., Mackman, N., Haase, V. H., Jaenisch, R., Corr, M., Nizet, V., Firestein, G. S., Gerber, H. P., Ferrara, N., & Johnson, R. S. (2003). HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell, 112(5), 645–657. https://doi.org/10.1016/s0092-8674(03)00154-5

Imtiyaz, H. Z., & Simon, M. C. (2010). Hypoxia-inducible factors as essential regulators of inflammation. Current topics in microbiology and immunology, 345, 105–120. https://doi.org/10.1007/82_2010_74

Corzo, C. A., Condamine, T., Lu, L., Cotter, M. J., Youn, J. I., Cheng, P., Cho, H. I., Celis, E., Quiceno, D. G., Padhya, T., McCaffrey, T. V., McCaffrey, J. C., & Gabrilovich, D. I. (2010). HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. The Journal of experimental medicine, 207(11), 2439–2453. https://doi.org/10.1084/jem.20100587

Walmsley, S. R., Print, C., Farahi, N., Peyssonnaux, C., Johnson, R. S., Cramer, T., Sobolewski, A., Condliffe, A. M., Cowburn, A. S., Johnson, N., & Chilvers, E. R. (2005). Hypoxia-induced neutrophil survival is mediated by HIF-1alpha-dependent NF-kappaB activity. The Journal of experimental medicine, 201(1), 105–115. https://doi.org/10.1084/jem.20040624

Tannahill, G. M., Curtis, A. M., Adamik, J., Palsson-McDermott, E. M., McGettrick, A. F., Goel, G., Frezza, C., Bernard, N. J., Kelly, B., Foley, N. H., Zheng, L., Gardet, A., Tong, Z., Jany, S. S., Corr, S. C., Haneklaus, M., Caffrey, B. E., Pierce, K., Walmsley, S., Beasley, F. C., … O'Neill, L. A. (2013). Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature, 496(7444), 238–242. https://doi.org/10.1038/nature11986

Dang, E. V., Barbi, J., Yang, H. Y., Jinasena, D., Yu, H., Zheng, Y., Bordman, Z., Fu, J., Kim, Y., Yen, H. R., Luo, W., Zeller, K., Shimoda, L., Topalian, S. L., Semenza, G. L., Dang, C. V., Pardoll, D. M., & Pan, F. (2011). Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell, 146(5), 772–784. https://doi.org/10.1016/j.cell.2011.07.033

Jantsch, J., & Schödel, J. (2015). Hypoxia and hypoxia-inducible factors in myeloid cell-driven host defense and tissue homeostasis. Immunobiology, 220(2), 305–314. https://doi.org/10.1016/j.imbio.2014.09.009

Cui, W., Zhou, J., Dehne, N., & Brüne, B. (2015). Hypoxia induces calpain activity and degrades SMAD2 to attenuate TGFβ signaling in macrophages. Cell & bioscience, 5, 36. https://doi.org/10.1186/s13578-015-0026-x

Guzy, R. D., Hoyos, B., Robin, E., Chen, H., Liu, L., Mansfield, K. D., Simon, M. C., Hammerling, U., & Schumacker, P. T. (2005). Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell metabolism, 1(6), 401–408. https://doi.org/10.1016/j.cmet.2005.05.001

Brunelle, J. K., Bell, E. L., Quesada, N. M., Vercauteren, K., Tiranti, V., Zeviani, M., Scarpulla, R. C., & Chandel, N. S. (2005). Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell metabolism, 1(6), 409–414. https://doi.org/10.1016/j.cmet.2005.05.002

Kapitsinou, P. P., & Haase, V. H. (2008). The VHL tumor suppressor and HIF: insights from genetic studies in mice. Cell death and differentiation, 15(4), 650–659. https://doi.org/10.1038/sj.cdd.4402313

Smith, T. G., Robbins, P. A., & Ratcliffe, P. J. (2008). The human side of hypoxia-inducible factor. British journal of haematology, 141(3), 325–334. https://doi.org/10.1111/j.1365-2141.2008.07029.x

Lee, J. W., Bae, S. H., Jeong, J. W., Kim, S. H., & Kim, K. W. (2004). Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Experimental & molecular medicine, 36(1), 1–12. https://doi.org/10.1038/emm.2004.1

Vaupel, P., & Mayer, A. (2007). Hypoxia in cancer: significance and impact on clinical outcome. Cancer metastasis reviews, 26(2), 225–239. https://doi.org/10.1007/s10555-007-9055-1.

Views:

42

Downloads:

22

Published
2025-12-30
Citations
How to Cite
Kamil Borysewicz, Illia Koval, Wiktor Kubik, Bartłomiej Czarnecki, Jan Nowak, Barbara Kujawa, Bartosz Zwoliński, Kacper Sukiennicki, Wirginia Bertman, Natalia Kołdej, Zuzanna Kępczyńska, Katarzyna Szewczyk, & Klaudia Romejko. (2025). ROLE OF HIF-1 SIGNALING PATHWAY IN CELLULAR ADAPTATION TO HYPOXIA. International Journal of Innovative Technologies in Social Science, 4(4(48). https://doi.org/10.31435/ijitss.4(48).2025.4299

Most read articles by the same author(s)

<< < 1 2