ROLE OF HIF-1 SIGNALING PATHWAY IN CELLULAR ADAPTATION TO HYPOXIA
Abstract
Hypoxia accompanying chronic inflammatory diseases leads to dysregulation of cells’ homeostasis, causes energy deficits and intensifies inflammatory processes. Hypoxia-inducible factors (HIFs) are the central regulators of the response to hypoxia, enabling metabolic and functional adaptation of immune cells by altering gene expression. HIF-1α and HIF-2α modulate the lifespan, differentiation, priming and activation of neutrophils, macrophages, lymphocytes, and dendritic cells- playing a key role in influencing the balance between proinflammatory and reparative responses. Interactions between HIF and NF-κB pathways regulate hypoxic and inflammatory signaling, and as a result determine course, severity and treatment efficacy of many chronic diseases. Those two pathways are capable of influencing each other in a manner of negative feedback-loop. Understanding the mechanisms of this regulation opens up new therapeutic perspectives in the treatment of pulmonary diseases associated with hypoxia and inflammation, and a hypothetical possibility to slow down the ratio at which chronic inflammatory response contributes to deterioration of patients’ quality of life.
References
Choudhry, H., & Harris, A. L. (2018). Advances in Hypoxia-Inducible Factor Biology. Cell metabolism, 27(2), 281–298. https://doi.org/10.1016/j.cmet.2017.10.005
Semenza G. L. (2014). Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annual review of pathology, 9, 47–71. https://doi.org/10.1146/annurev-pathol-012513-104720
Bartels, K., Grenz, A., & Eltzschig, H. K. (2013). Hypoxia and inflammation are two sides of the same coin. Proceedings of the National Academy of Sciences of the United States of America, 110(46), 18351–18352. https://doi.org/10.1073/pnas.1318345110
Palazon, A., Goldrath, A. W., Nizet, V., & Johnson, R. S. (2014). HIF transcription factors, inflammation, and immunity. Immunity, 41(4), 518–528. https://doi.org/10.1016/j.immuni.2014.09.008
Taylor, C. T., & Colgan, S. P. (2017). Regulation of immunity and inflammation by hypoxia in immunological niches. Nature reviews. Immunology, 17(12), 774–785. https://doi.org/10.1038/nri.2017.103
Dvornikova, K. A., Platonova, O. N., & Bystrova, E. Y. (2023). Hypoxia and Intestinal Inflammation: Common Molecular Mechanisms and Signaling Pathways. International journal of molecular sciences, 24(3), 2425. https://doi.org/10.3390/ijms24032425
Sitkovsky, M., & Lukashev, D. (2005). Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors. Nature reviews. Immunology, 5(9), 712–721. https://doi.org/10.1038/nri1685
Kaelin, W. G., Jr, & Ratcliffe, P. J. (2008). Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Molecular cell, 30(4), 393–402. https://doi.org/10.1016/j.molcel.2008.04.009
Nobel Prize in Physiology or Medicine 2019. The Nobel Assembly, Karolinska Institutet.
Keith, B., Johnson, R. S., & Simon, M. C. (2011). HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nature reviews. Cancer, 12(1), 9–22. https://doi.org/10.1038/nrc3183
Semenza G. L. (2012). Hypoxia-inducible factors in physiology and medicine. Cell, 148(3), 399–408. https://doi.org/10.1016/j.cell.2012.01.021
Corrado, C., & Fontana, S. (2020). Hypoxia and HIF Signaling: One Axis with Divergent Effects. International Journal of Molecular Sciences, 21(16), 5611. https://doi.org/10.3390/ijms21165611
Schofield, C. J., & Ratcliffe, P. J. (2004). Oxygen sensing by HIF hydroxylases. Nature reviews. Molecular cell biology, 5(5), 343–354. https://doi.org/10.1038/nrm1366
Wenger, R. H., Stiehl, D. P., & Camenisch, G. (2005). Integration of oxygen signaling at the consensus HRE. Science's STKE : signal transduction knowledge environment, 2005(306), re12. https://doi.org/10.1126/stke.3062005re12
Rius, J., Guma, M., Schachtrup, C., Akassoglou, K., Zinkernagel, A. S., Nizet, V., Johnson, R. S., Haddad, G. G., & Karin, M. (2008). NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature, 453(7196), 807–811. https://doi.org/10.1038/nature06905
van Uden, P., Kenneth, N. S., & Rocha, S. (2008). Regulation of hypoxia-inducible factor-1alpha by NF-kappaB. The Biochemical journal, 412(3), 477–484. https://doi.org/10.1042/BJ20080476
Cummins, E. P., Berra, E., Comerford, K. M., Ginouves, A., Fitzgerald, K. T., Seeballuck, F., Godson, C., Nielsen, J. E., Moynagh, P., Pouyssegur, J., & Taylor, C. T. (2006). Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18154–18159. https://doi.org/10.1073/pnas.0602235103
Barnes P. J. (2016). Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. The Journal of allergy and clinical immunology, 138(1), 16–27. https://doi.org/10.1016/j.jaci.2016.05.011
Titova, O. N., Kuzubova, O. N., Lebedeva, E. S., Surkova, E. A., Preobrazhenskaya, T. N., & Dvorakovskaya, I. V. (2018). Anti-inflammatory and regenerative effects of hypoxic signaling inhibition in a model of COPD. PULMONOLOGIYA, 28(2), 169-176..
Cramer, T., Yamanishi, Y., Clausen, B. E., Förster, I., Pawlinski, R., Mackman, N., Haase, V. H., Jaenisch, R., Corr, M., Nizet, V., Firestein, G. S., Gerber, H. P., Ferrara, N., & Johnson, R. S. (2003). HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell, 112(5), 645–657. https://doi.org/10.1016/s0092-8674(03)00154-5
Imtiyaz, H. Z., & Simon, M. C. (2010). Hypoxia-inducible factors as essential regulators of inflammation. Current topics in microbiology and immunology, 345, 105–120. https://doi.org/10.1007/82_2010_74
Corzo, C. A., Condamine, T., Lu, L., Cotter, M. J., Youn, J. I., Cheng, P., Cho, H. I., Celis, E., Quiceno, D. G., Padhya, T., McCaffrey, T. V., McCaffrey, J. C., & Gabrilovich, D. I. (2010). HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. The Journal of experimental medicine, 207(11), 2439–2453. https://doi.org/10.1084/jem.20100587
Walmsley, S. R., Print, C., Farahi, N., Peyssonnaux, C., Johnson, R. S., Cramer, T., Sobolewski, A., Condliffe, A. M., Cowburn, A. S., Johnson, N., & Chilvers, E. R. (2005). Hypoxia-induced neutrophil survival is mediated by HIF-1alpha-dependent NF-kappaB activity. The Journal of experimental medicine, 201(1), 105–115. https://doi.org/10.1084/jem.20040624
Tannahill, G. M., Curtis, A. M., Adamik, J., Palsson-McDermott, E. M., McGettrick, A. F., Goel, G., Frezza, C., Bernard, N. J., Kelly, B., Foley, N. H., Zheng, L., Gardet, A., Tong, Z., Jany, S. S., Corr, S. C., Haneklaus, M., Caffrey, B. E., Pierce, K., Walmsley, S., Beasley, F. C., … O'Neill, L. A. (2013). Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature, 496(7444), 238–242. https://doi.org/10.1038/nature11986
Dang, E. V., Barbi, J., Yang, H. Y., Jinasena, D., Yu, H., Zheng, Y., Bordman, Z., Fu, J., Kim, Y., Yen, H. R., Luo, W., Zeller, K., Shimoda, L., Topalian, S. L., Semenza, G. L., Dang, C. V., Pardoll, D. M., & Pan, F. (2011). Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell, 146(5), 772–784. https://doi.org/10.1016/j.cell.2011.07.033
Jantsch, J., & Schödel, J. (2015). Hypoxia and hypoxia-inducible factors in myeloid cell-driven host defense and tissue homeostasis. Immunobiology, 220(2), 305–314. https://doi.org/10.1016/j.imbio.2014.09.009
Cui, W., Zhou, J., Dehne, N., & Brüne, B. (2015). Hypoxia induces calpain activity and degrades SMAD2 to attenuate TGFβ signaling in macrophages. Cell & bioscience, 5, 36. https://doi.org/10.1186/s13578-015-0026-x
Guzy, R. D., Hoyos, B., Robin, E., Chen, H., Liu, L., Mansfield, K. D., Simon, M. C., Hammerling, U., & Schumacker, P. T. (2005). Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell metabolism, 1(6), 401–408. https://doi.org/10.1016/j.cmet.2005.05.001
Brunelle, J. K., Bell, E. L., Quesada, N. M., Vercauteren, K., Tiranti, V., Zeviani, M., Scarpulla, R. C., & Chandel, N. S. (2005). Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell metabolism, 1(6), 409–414. https://doi.org/10.1016/j.cmet.2005.05.002
Kapitsinou, P. P., & Haase, V. H. (2008). The VHL tumor suppressor and HIF: insights from genetic studies in mice. Cell death and differentiation, 15(4), 650–659. https://doi.org/10.1038/sj.cdd.4402313
Smith, T. G., Robbins, P. A., & Ratcliffe, P. J. (2008). The human side of hypoxia-inducible factor. British journal of haematology, 141(3), 325–334. https://doi.org/10.1111/j.1365-2141.2008.07029.x
Lee, J. W., Bae, S. H., Jeong, J. W., Kim, S. H., & Kim, K. W. (2004). Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Experimental & molecular medicine, 36(1), 1–12. https://doi.org/10.1038/emm.2004.1
Vaupel, P., & Mayer, A. (2007). Hypoxia in cancer: significance and impact on clinical outcome. Cancer metastasis reviews, 26(2), 225–239. https://doi.org/10.1007/s10555-007-9055-1.
Views:
42
Downloads:
22
Copyright (c) 2025 Kamil Borysewicz, Illia Koval, Wiktor Kubik, Bartłomiej Czarnecki, Jan Nowak, Barbara Kujawa, Bartosz Zwoliński, Kacper Sukiennicki, Wirginia Bertman, Natalia Kołdej, Zuzanna Kępczyńska, Katarzyna Szewczyk, Klaudia Romejko

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

