ARTIFICIAL INTELLIGENCE IN AGE-RELATED MACULAR DEGENERATION: POTENTIAL CLINICAL IMPLICATION

Keywords: Artificial Intelligence, Age-Related Macular Degeneration, Optical Coherence Tomography, Retinal Image Analysis, Teleophthalmology

Abstract

Introduction: Age-related macular degeneration (AMD) constitutes a significant health concern. AMD is associated with vision impairment. A timely diagnosis and personalized therapeutic strategies are key determinants of a favorable disease course. Diagnosis and monitoring of disease progression are mainly based on imaging modalities. Currently, the interpretation of imaging results is performed by clinicians, which is time-consuming, expensive and often limited due to disparities in access to healthcare. The application of artificial intelligence (AI) for image analysis seems to be an innovative approach. This approach will facilitate the clinical management of patients with AMD, who require frequent follow-up visits to monitor disease progression, evaluate therapeutic efficacy, and determine the necessity of therapeutic escalation.

Materials and Methods: This study is a literature review based on recent literature including clinical trials, meta-analyses and randomized controlled trials. The methodology involved a literature search from 2020-2025 across electronic databases, including PubMed, Scopus and Google Scholar, The keywords search terms like “Artificial intelligence and age-related macular degeneration”, “Artificial intelligence and optical coherence tomography”.

Results: AI models present high diagnostic accuracy in AMD, achieving sensitivity and specificity above 90%. AI model results are often comparable or better than clinical assessment. AI effectively detects disease and predicts progression, supporting treatment planning, including anti-VEGF scheduling. Performance may decline across devices and heterogeneous cohorts. Recent innovation, specially multimodal systems including various imaging tests, indicate high diagnostic maturity and clear clinical usefulness.

References

GBD 2019 Blindness and Vision Impairment Collaborators, (2021), Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study, Lancet Glob Health 2021; 2: 144–60, February 10, 2021; doi: 10.1016/S2214-109X(20)30489-7

Vision Loss Expert Group of the Global Burden of Disease Study, (2024), Global estimates on the number of people blind or visually impaired by age-related macular degeneration: a meta-analysis from 2000 to 2020, Eye (Lond) 2024 Aug;38(11):2070-2082; doi: 10.1038/s41433-024-03050-z

Raghad B., Lama A., Abdullah A., Majed A., Rahaf A., Hamad A., Najwan A-J., Abdulaziz A. T., (2025), Risk factors for age-related macular degeneration: Updated systematic review and meta-analysis, Medicine (Baltimore); 104(8):e41599. doi: 10.1097/MD.0000000000041599

Stahl A., (2020), The Diagnosis and Treatment of Age-Related Macular Degeneration, Deutsches Arzteblatt, 117(29-30):513–520. doi: 10.3238/arztebl.2020.0513

Glasner P., Siebert K., Glasner L., (2016), Nowoczesne metody obrazowania dna oka Eye fundus examination, Forum Medycyny Rodzinnej 2016, vol 10, no 2, 73–78, https://journals.viamedica.pl/forum_medycyny_rodzinnej/article/view/47681/34971

Thomas C., Mirza R., Gill M., (2021), Age-Related Macular Degeneration, Medical Clinics of North America Volume 105, Issue 3, May 2021, Pages 473-491 https://doi.org/10.1016/j.mcna.2021.01.003

Lazaridis G., Lorenzi M., Mohamed-Noriega J., Aguilar-Munoa S., Suzuki K., Nomoto H., Oueselin S., Garway-Heath D., (2021), OCT Signal Enhancement with Deep Learning, Ophthalmology Glaucoma Volume 4, Issue 3, May–June 2021, Pages 295-304, https://doi.org/10.1016/j.ogla.2020.10.008

Figurska M., Robaszkiewicz J., Wierzbowska J., (2010) Optical coherence tomography in imaging of macular diseases. Klin Oczna. 2010;112(4-6):138-46. PMID: 20825070.

Hong H, Mújica OJ, Anaya J, Lansingh VC, (2016), López E, Silva JC. The Challenge of Universal Eye Health in Latin America: distributive inequality of ophthalmologists in 14 countries. BMJ Open. doi: 10.1136/bmjopen-2016-012819

Dong L, Yang Q, Zhang RH, Wei WB. (2021) Artificial intelligence for the detection of age-related macular degeneration in color fundus photographs: A systematic review and meta-analysis. EClinicalMedicine. 2021 May 8;35:100875. doi: 10.1016/j.eclinm.2021.100875

Kang Ch, Lo JE, Zhang H, Ng SM, Lin JC, Scott IU, Kalpathy-Cramer J, Liu SHA, Greenberg P, (2024), Artificial intelligence for diagnosing exudative age‐related macular degeneration, Cochrane Database Syst Rev.; 2024(10):CD015522. doi: 10.1002/14651858.CD015522.pub2

Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR. (2016) Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA. 2016 Dec 13;316(22):2402-2410. doi: 10.1001/jama.2016.17216. PMID: 27898976.

Deimazar G, Sabbaghi H, Ahmadieh H, Sheikhtaheri A. (2025) Artificial intelligence for detection of age-related macular degeneration based on fundus images: A systematic review. Surv Ophthalmol. 2025 Oct 30:S0039-6257(25)00193-6. doi:10.1016/j.survophthal.2025.10.004. Epub ahead of print. PMID: 41173219.

Schmidt-Erfurth U, Mai J, Reiter GS, Riedl S, Vogl WD, Sadeghipour A, McKeown A, Foos E, Scheibler L, Bogunovic H. (2025), Disease Activity and Therapeutic Response to Pegcetacoplan for Geographic Atrophy Identified by Deep Learning-Based Analysis of OCT. Ophthalmology. 2025 Feb;132(2):181-193. doi: 10.1016/j.ophtha.2024.08.017. Epub 2024 Aug 14. PMID: 39151755.

Ting DSW, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, Tan GSW, Schmetterer L, Keane PA, Wong TY. (2019) Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019 Feb;103(2):167-175. doi: 10.1136/bjophthalmol-2018-313173. Epub 2018 Oct 25. PMID: 30361278; PMCID: PMC6362807.

Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC. (2018), Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med. 2018 Aug 28;1:39. doi: 10.1038/s41746-018-0040-6. PMID: 31304320; PMCID: PMC6550188.

Raghu, K., S, T., S Devishamani, C., M, S., Rajalakshmi, R., & Raman, R. (2023). The Utility of ChatGPT in Diabetic Retinopathy Risk Assessment: A Comparative Study with Clinical Diagnosis. Clinical Ophthalmology, 17, 4021–4031. https://doi.org/10.2147/OPTH.S435052

Farahat Z, Zrira N, Souissi N, Bennani Y, Bencherif S, Benamar S, Belmekki M, Ngote MN, Megdiche K. Diabetic retinopathy screening through artificial intelligence algorithms: A systematic review. Surv Ophthalmol. 2024 Sep-Oct;69(5):707-721. doi: 10.1016/j.survophthal.2024.05.008. Epub 2024 Jun 15. PMID: 38885761.

Deimazar G, Sabbaghi H, Ahmadieh H, Sheikhtaheri A, (2025), Artificial intelligence for detection of age-related macular degeneration based on fundus images: A systematic review,

Survey of Ophthalmology 2025, ISSN 0039-6257, https://doi.org/10.1016/j.survophthal.2025.10.004.

Mares V., Nehemy M.B., Bogunovic H., Frank S., Reiter GS., Schmidt-Erfurth U., (2024). AI-based support for optical coherence tomography in age-related macular degenerationInternational Journal of Retina and Vitreous 10, 31 https://doi.org/10.1186/s40942-024-00549-1

Han JED, Liu X, Bunce C, Douiri A, Vale L, Blandford A, Lawrenson J, Hussain R, Grimaldi G, Learoyd AE, Kernohan A, Dinah C, Minos E, Sim D, Aslam T, Patel PJ, Denniston AK, Keane PA, Balaskas K. (2022) Teleophthalmology-enabled and artificial intelligence-ready referral pathway for community optometry referrals of retinal disease (HERMES): a Cluster Randomised Superiority Trial with a linked Diagnostic Accuracy Study-HERMES study report 1-study protocol. BMJ Open. 2022 Feb 1;12(2):e055845. doi: 10.1136/bmjopen-2021-055845. PMID: 35105593; PMCID: PMC8808461.

Abràmoff MD, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC, Niemeijer M. (2016) Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning. Invest Ophthalmol Vis Sci. 2016 Oct 1;57(13):5200-5206. doi: 10.1167/iovs.16-19964. PMID: 27701631.

Bi Z, Li J, Liu Q, Fang Z. (2025), Deep learning-based optical coherence tomography and retinal images for detection of diabetic retinopathy: a systematic and meta analysis. Front Endocrinol (Lausanne). 2025 Mar 18;16:1485311. doi: 10.3389/fendo.2025.1485311. PMID: 40171193; PMCID: PMC11958191.

Kang C, Lo JE, Zhang H, Ng SM, Lin JC, Scott IU, Kalpathy-Cramer J, Liu SA, Greenberg PB. (2024), Artificial intelligence for diagnosing exudative age-related macular degeneration. Cochrane Database Syst Rev. 2024 Oct 17;10(10):CD015522. doi: 10.1002/14651858.CD015522.pub2 PMID: 39417312; PMCID: PMC11483348.

Chen KY, Chan HC, Chan CM. (2025), Can artificial intelligence with multimodal imaging outperform traditional methods in predicting age-related macular degeneration progression? A systematic review and exploratory meta-analysis. BMC Med Inform Decis Mak. 2025 Sep 1;25(1):321. doi: 10.1186/s12911-025-03119-z. PMID: 40890721; PMCID: PMC12400700.

Yu S, Jones IL, Maunz A, Bachmeier I, Albrecht T, Ebneter A, Gliem M, Staurenghi G, Sadda SR, Chakravarty U, Fauser S. (2025), Artificial intelligence-based analysis of retinal fluid volume dynamics in neovascular age-related macular degeneration and association with vision and atrophy. Eye (Lond). 2025 Jan;39(1):154-161. doi: 10.1038/s41433-024-03399-1. Epub 2024 Oct 15. PMID: 39406933; PMCID: PMC11732971.

O’Shea K., Nash R., (2015), An Introduction to Convolutional Neural Networks, Neural and Evolutionary Computing (cs.NE); arXiv:1511.08458 [cs.NE], https://doi.org/10.48550/arXiv.1511.08458

Leng X, Shi R, Wu Y, Zhu S, Cai X, Lu X, Liu R. (2023), Deep learning for detection of age-related macular degeneration: A systematic review and meta-analysis of diagnostic test accuracy studies. PLoS One. 2023 Apr 6;18(4):e0284060. doi: 10.1371/journal.pone.0284060. PMID: 37023082; PMCID: PMC10079062.

Yellapragada B, Hornauer S, Snyder K, Yu S, Yiu G. (2022) Self-Supervised Feature Learning and Phenotyping for Assessing Age-Related Macular Degeneration Using Retinal Fundus Images. Ophthalmol Retina. 2022 Feb;6(2):116-129. doi: 10.1016/j.oret.2021.06.010. Epub 2021 Jul 2. PMID: 34217854; PMCID: PMC9482819.

Cheung R, Chun J, Sheidow T, Motolko M, Malvankar-Mehta MS. (2022), Diagnostic accuracy of current machine learning classifiers for age-related macular degeneration: a systematic review and meta-analysis. Eye (Lond). 2022 May;36(5):994-1004. doi: 10.1038/s41433-021-01540-y. Epub 2021 May 6. PMID: 33958739; PMCID: PMC9046206.

Sodhi SK, Pereira A, Oakley JD, Golding J, Trimboli C, Russakoff DB, Choudhry N. (2022) Utilization of deep learning to quantify fluid volume of neovascular age-related macular degeneration patients based on swept-source OCT imaging: The ONTARIO study. PLoS One. 2022 Feb 14;17(2):e0262111. doi: 10.1371/journal.pone.0262111. PMID: 35157713; PMCID: PMC8843217.

Coulibaly LM, Sacu S, Fuchs P, Bogunovic H, Faustmann G, Unterrainer C, Reiter GS, Schmidt-Erfurth U. (2022) Personalized treatment supported by automated quantitative fluid analysis in active neovascular age-related macular degeneration (nAMD)-a phase III, prospective, multicentre, randomized study: design and methods. Eye (Lond). 2023 May;37(7):1464-1469. doi: 10.1038/s41433-022-02154-8. Epub 2022 Jul 5. PMID: 35790835; PMCID: PMC9255834.

Keenan TDL, Clemons TE, Domalpally A, Elman MJ, Havilio M, Agrón E, Benyamini G, Chew EY. (2021) Retinal Specialist versus Artificial Intelligence Detection of Retinal Fluid from OCT: Age-Related Eye Disease Study 2: 10-Year Follow-On Study. Ophthalmology. 2021 Jan;128(1):100-109. doi: 10.1016/j.ophtha.2020.06.038. Epub 2020 Jun 27. PMID: 32598950; PMCID: PMC8371700.

Chandra RS, Ying GS.(2024) Predicting Visual Acuity Responses to Anti-VEGF Treatment in the Comparison of Age-related Macular Degeneration Treatments Trials Using Machine Learning. Ophthalmol Retina. 2024 May;8(5):419-430. doi: 10.1016/j.oret.2023.11.010. Epub 2023 Nov 24. PMID: 38008218; PMCID: PMC11070304.

Gutfleisch M, Heimes-Bussmann B, Aydin S, Petrovic R, Loktyushin A, Ohji M, Takahashi K, Okada AA, Scholz P, Youssef H, Bauer-Steinhusen U, Machewitz T, Rothaus K, Lommatzsch A. (2025), A post-hoc analysis of intravitreal aflibercept-treated nAMD patients from ARIES & ALTAIR: predicting treatment intervals and frequency for aflibercept treat-and-extend therapy regimen using machine learning. Graefes Arch Clin Exp Ophthalmol. 2025 Jul;263(7):1885-1897. doi: 10.1007/s00417-025-06812-x. Epub 2025 Apr 10. PMID: 40210713; PMCID: PMC12373702.

Vogl WD, Riedl S, Mai J, Reiter GS, Lachinov D, Bogunović H, Schmidt-Erfurth U. (2023), Predicting Topographic Disease Progression and Treatment Response of Pegcetacoplan in Geographic Atrophy Quantified by Deep Learning. Ophthalmol Retina. 2023 Jan;7(1):4-13. doi: 10.1016/j.oret.2022.08.003. Epub 2022 Aug 7. PMID: 35948209.

Riedl S, Vogl WD, Mai J, Reiter GS, Lachinov D, Grechenig C, McKeown A, Scheibler L, Bogunović H, Schmidt-Erfurth U. (2022), The Effect of Pegcetacoplan Treatment on Photoreceptor Maintenance in Geographic Atrophy Monitored by Artificial Intelligence-Based OCT Analysis. Ophthalmol Retina. 2022 Nov;6(11):1009-1018. doi: 10.1016/j.oret.2022.05.030. Epub 2022 Jun 3. PMID: 35667569.

Chandra RS, Ying GS. (2023), Evaluation of Multiple Machine Learning Models for Predicting Number of Anti-VEGF Injections in the Comparison of AMD Treatment Trials (CATT). Transl Vis Sci Technol. 2023 Jan 3;12(1):18. doi: 10.1167/tvst.12.1.18. PMID: 36633874; PMCID: PMC9840444.

Mai J, Reiter GS, Riedl S, Vogl WD, Sadeghipour A, Foos E, McKeown A, Bogunovic H, Schmidt-Erfurth U. (2024), Quantitative comparison of automated OCT and conventional FAF-based geographic atrophy measurements in the phase 3 OAKS/DERBY trials. Sci Rep. 2024 Sep 4;14(1):20531. doi: 10.1038/s41598-024-71496-y. PMID: 39227682; PMCID: PMC11372055.

Schmidt-Erfurth U, Mulyukov Z, Gerendas BS, Reiter GS, Lorand D, Weissgerber G, Bogunović H. (2023), Therapeutic response in the HAWK and HARRIER trials using deep learning in retinal fluid volume and compartment analysis. Eye (Lond). 2023 Apr;37(6):1160-1169. doi: 10.1038/s41433-022-02077-4. Epub 2022 May 6. PMID: 35523860; PMCID: PMC10101971.

Riedl S, Schmidt-Erfurth U, Rivail A, Birner K, Mai J, Vogl WD, Wu Z, Guymer RH, Bogunovic H, Reiter GS. (2024), Sequence of Morphological Changes Preceding Atrophy in Intermediate AMD Using Deep Learning. Invest Ophthalmol Vis Sci. 2024 Jul 1;65(8):30. doi: 10.1167/iovs.65.8.30. PMID: 39028907; PMCID: PMC11262471.

Fu DJ, Glinton S, Lipkova V, Faes L, Liefers B, Zhang G, Pontikos N, McKeown A, Scheibler L, Patel PJ, Keane PA, Balaskas K. (2024), Deep-learning automated quantification of longitudinal OCT scans demonstrates reduced RPE loss rate, preservation of intact macular area and predictive value of isolated photoreceptor degeneration in geographic atrophy patients receiving C3 inhibition treatment. Br J Ophthalmol. 2024 Mar 20;108(4):536-545. doi: 10.1136/bjo-2022-322672. PMID: 37094835; PMCID: PMC10958254.

Abdelmotaal H, Sharaf M, Soliman W, Wasfi E, Kedwany SM. (2022), Bridging the resources gap: deep learning for fluorescein angiography and optical coherence tomography macular thickness map image translation. BMC Ophthalmol. 2022 Sep 1;22(1):355. doi: 10.1186/s12886-022-02577-7. PMID: 36050661; PMCID: PMC9434904.

Urbańska, K., Więsyk, P., Woźniak, M., Kawecka, W., Bentkowska, Z., Bogoń, A., Lęgas, A. (2024). Artificial intelligence in age-related macular degeneration — a review. Ophthalmology Journal, 9, 188–193. https://doi.org/10.5603/oj.100575

Ting DSJ, Foo VH, Yang LWY, Sia JT, Ang M, Lin H, Chodosh J, Mehta JS, Ting DSW. (2021), Artificial intelligence for anterior segment diseases: Emerging applications in ophthalmology. Br J Ophthalmol. 2021 Feb;105(2):158-168. doi: 10.1136/bjophthalmol-2019-315651. Epub 2020 Jun 12. PMID: 32532762.

Skevas C, de Olaguer NP, Lleó A, Thiwa D, Schroeter U, Lopes IV, Mautone L, Linke SJ, Spitzer MS, Yap D, Xiao D. (2024), Implementing and evaluating a fully functional AI-enabled model for chronic eye disease screening in a real clinical environment. BMC Ophthalmol. 2024 Feb 1;24(1):51. doi: 10.1186/s12886-024-03306-y. PMID: 38302908; PMCID: PMC10832120.

Deimazar G, Sabbaghi H, Ahmadieh H, Sheikhtaheri A. (2025), Artificial intelligence for detection of age-related macular degeneration based on fundus images: A systematic review. Surv Ophthalmol. 2025 Oct 30:S0039-6257(25)00193-6. doi: 10.1016/j.survophthal.2025.10.004. Epub ahead of print. PMID: 41173219.

Li Z, Wang L, Wu X, Jiang J, Qiang W, Xie H, Zhou H, Wu S, Shao Y, Chen W. (2023), Artificial intelligence in ophthalmology: The path to the real-world clinic. Cell Rep Med. 2023 Jul 18;4(7):101095. doi: 10.1016/j.xcrm.2023.101095. Epub 2023 Jun 28. PMID: 37385253; PMCID: PMC10394169.

Zhang P, Quellec G, Matta S, Borderie L, Le Guilcher A, Thiery T, Cochener B, Lamard M. (2025), A robust deep learning classifier for screening multiple retinal diseases on optical coherence tomography. Sci Rep. 2025 Oct 9;15(1):35334. doi: 10.1038/s41598-025-19286-y. PMID: 41068219; PMCID: PMC12511338.

Carabantes, M. (2020) Black-box artificial intelligence: an epistemological and critical analysis. AI & Soc 35, 309–317, https://doi.org/10.1007/s00146-019-00888-w

Agbareia R, Omar M, Zloto O, Glicksberg BS, Nadkarni GN, Klang E. (2025) Multimodal LLMs for retinal disease diagnosis via OCT: few-shot versus single-shot learning. Ther Adv Ophthalmol. 2025 May 20;17:25158414251340569. doi: 10.1177/25158414251340569. PMID: 40400723; PMCID: PMC12093016.

Grzybowski A, Jin K, Zhou J, Pan X, Wang M, Ye J, Wong TY. (2024), Retina Fundus Photograph-Based Artificial Intelligence Algorithms in Medicine: A Systematic Review. Ophthalmol Ther. 2024 Aug;13(8):2125-2149. doi: 10.1007/s40123-024-00981-4. Epub 2024 Jun 24. PMID: 38913289; PMCID: PMC11246322.

Lim JI, Rachitskaya AV, Hallak JA, Gholami S, Alam MN.(2024) Artificial intelligence for retinal diseases. Asia Pac J Ophthalmol (Phila). 2024 Jul-Aug;13(4):100096. doi: 10.1016/j.apjo.2024.100096. Epub 2024 Aug 27. PMID: 39209215.

Popescu Patoni SI, Muşat AAM, Patoni C, Popescu MN, Munteanu M, Costache IB, Pîrvulescu RA, Mușat O. (2023), Artificial intelligence in ophthalmology. Rom J Ophthalmol. 2023 Jul-Sep;67(3):207-213. doi: 10.22336/rjo.2023.37. PMID: 37876505; PMCID: PMC10591433.

Frank-Publig S, Birner K, Riedl S, Reiter GS, Schmidt-Erfurth U. (2025), Artificial intelligence in assessing progression of age-related macular degeneration. Eye (Lond). 2025 Feb;39(2):262-273. doi: 10.1038/s41433-024-03460-z. Epub 2024 Nov 18. PMID: 39558093; PMCID: PMC11751489.

Published
2025-12-29
Citations
How to Cite
Zuzanna Kępczyńska, Wiktor Kubik, Bartłomiej Czarnecki, Jan Nowak, Barbara Kujawa, Bartosz Zwoliński, Kacper Sukiennicki, Wirginia Bertman, Natalia Kołdej, Katarzyna Szewczyk, Kamil Borysewicz, Klaudia Romejko, & Aleksandra Boral. (2025). ARTIFICIAL INTELLIGENCE IN AGE-RELATED MACULAR DEGENERATION: POTENTIAL CLINICAL IMPLICATION. International Journal of Innovative Technologies in Social Science, 2(4(48). https://doi.org/10.31435/ijitss.4(48).2025.4351

Most read articles by the same author(s)