A THREE-DIMENSIONAL REVOLUTION IN MEDICINE—THE USE OF 3D PRINTING TECHNOLOGY IN ORTHOPEDICS, SURGERY, AND NEUROSURGERY
Abstract
3D printing has become one of the most dynamically developing technologies in medicine in recent years, and the use of products made using a 3D printer is increasingly influencing medicine in areas such as medical education, surgery planning, personalizing implants and tissue engineering. Despite how quickly this field is developing, research and discussions are still ongoing whether this technology is safe for the patient, cost-effective and how it affects the health care system in the long term. The aim of this work is to present the applications of 3D printing in medicine and to assess its benefits, development prospects and limitations.
Brief description of the State of Knowledge: The narrative review presents the current state of knowledge about 3D printing in medicine, with particular emphasis on the operation of this technology in the fields of orthopedics, surgery and neurosurgery. The most popular methods of producing 3D models, the main advantages and disadvantages of the technology and predictions for the future development of the field of 3D printing in the development of medicine were discussed.
Methodology: A narrative literature review was conducted. The analysis covered scientific publications on 3D printing in healthcare. Sources from 2019-2025 were included, searching for terms such as: “3D printing in medicine,” “additive manufacturing in healthcare,” “personalized implants,” “3D printing,” “surgical models,” and “the future of 3D printing in medicine.”
References
Mamo, H. B., Adamiak, M., & Kunwar, A. (2023). 3D printed biomedical devices and their applications: A review on state-of-the-art technologies, existing challenges, and future perspectives. Journal of the Mechanical Behavior of Biomedical Materials, 143, 105930. https://doi.org/10.1016/j.jmbbm.2023.105930
Schubert, C., van Langeveld, M. C., & Donoso, L. A. (2014). Innovations in 3D printing: A 3D overview from optics to organs. British Journal of Ophthalmology, 98(2), 159–161. https://doi.org/10.1136/bjophthalmol-2013-304446
SPIE Professional. (2013, September 27). Chuck Hull: Pioneer in stereolithography. SPIE.
Gross, B. C., Erkal, J. L., Lockwood, S. Y., Chen, C., & Spence, D. M. (2014). Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Analytical Chemistry, 86(7), 3240–3253. https://doi.org/10.1021/ac403397r
Crump, S. S. (1992). Apparatus and method for creating three-dimensional objects (U.S. Patent No. 5,121,329). U.S. Patent and Trademark Office.
Sachs, E. M., Haggerty, J. S., Cima, M. J., & Williams, P. A. (1993). Three-dimensional printing techniques (U.S. Patent No. 5,204,055). U.S. Patent and Trademark Office.
Dawood, A., Marti Marti, B., Sauret-Jackson, V., & Darwood, A. (2015). 3D printing in dentistry. British Dental Journal, 219(11), 521–529. https://doi.org/10.1038/sj.bdj.2015.914
Salmi, M. (2021). Additive manufacturing processes in medical applications. Materials, 14(1), 191. https://doi.org/10.3390/ma14010191
Do, A. V., Khorsand, B., Geary, S. M., & Salem, A. K. (2015). 3D printing of scaffolds for tissue regeneration applications. Advanced Healthcare Materials, 4(12), 1742–1762. https://doi.org/10.1002/adhm.201500168
Murphy, S. V., & Atala, A. (2014). 3D bioprinting of tissues and organs. Nature Biotechnology, 32(8), 773–785. https://doi.org/10.1038/nbt.2958
Alemayehu, D. G., Zhang, Z., Tahir, E., Gateau, D., Zhang, D. F., & Ma, X. (2021). Preoperative planning using 3D printing technology in orthopedic surgery. BioMed Research International, 2021, 7940242. https://doi.org/10.1155/2021/7940242
Cheo, F. Y., Soeharno, H., & Woo, Y. L. (2024). Cost-effective office 3D printing process in orthopaedics and its benefits: A case presentation and literature review. Proceedings of Singapore Healthcare, 33, 20101058241227338. https://doi.org/10.1177/20101058241227338
Ballard, D. H., Mills, P., Duszak, R., Jr., Weisman, J. A., Rybicki, F. J., & Woodard, P. K. (2020). Medical 3D printing cost-savings in orthopedic and maxillofacial surgery: Cost analysis of operating room time saved with 3D printed anatomic models and surgical guides. Academic Radiology, 27(8), 1103–1113. https://doi.org/10.1016/j.acra.2019.08.011
Gu, B. K., Choi, D. J., Park, S. J., Kim, Y. J., & Kim, C. H. (2018). 3D bioprinting technologies for tissue engineering applications. Advances in Experimental Medicine and Biology, 1078, 15–28. https://doi.org/10.1007/978-981-13-0950-2_2
Oleksy, M., Dynarowicz, K., & Aebisher, D. (2023). Rapid prototyping technologies: 3D printing applied in medicine. Pharmaceutics, 15(8), 2169. https://doi.org/10.3390/pharmaceutics15082169
Tetsuka, H., & Shin, S. R. (2020). Materials and technical innovations in 3D printing in biomedical applications. Journal of Materials Chemistry B, 8(15), 2930–2950. https://doi.org/10.1039/d0tb00034e
Bandyopadhyay, A., Mitra, I., & Bose, S. (2020). 3D printing for bone regeneration. Current Osteoporosis Reports, 18(5), 505–514. https://doi.org/10.1007/s11914-020-00606-2
Serrano, D. R., Kara, A., Yuste, I., Luciano, F. C., Ongoren, B., Anaya, B. J., … Lalatsa, A. (2023). 3D printing technologies in personalized medicine, nanomedicines, and biopharmaceuticals. Pharmaceutics, 15(2), 313. https://doi.org/10.3390/pharmaceutics15020313
Kim, S., Yalla, S., Shetty, S., & Rosenblatt, N. J. (2022). 3D printed transtibial prosthetic sockets: A systematic review. PLOS ONE, 17(10), e0275161. https://doi.org/10.1371/journal.pone.0275161
Murphy, S. V., De Coppi, P., & Atala, A. (2020). Opportunities and challenges of translational 3D bioprinting. Nature Biomedical Engineering, 4(4), 370–380. https://doi.org/10.1038/s41551-019-0471-7
Ventola, C. L. (2014). Medical applications for 3D printing: Current and projected uses. P & T, 39(10), 704–711.
Schmidl, H., Zhao, Q., & Lee, M. (2022). Enhancing prosthetic autonomy through energy optimization. IEEE Transactions on Medical Robotics and Bionics, 14, 985–997.
Hale, L., Linley, E., & Kalaskar, D. M. (2020). A digital workflow for design and fabrication of bespoke orthoses using 3D scanning and 3D printing: A patient-based case study. Scientific Reports, 10(1), 7028. https://doi.org/10.1038/s41598-020-63937-1
Keszler, M. S., Heckman, J. T., Kaufman, G. E., & Morgenroth, D. C. (2019). Advances in prosthetics and rehabilitation of individuals with limb loss. Physical Medicine and Rehabilitation Clinics of North America, 30(2), 423–437. https://doi.org/10.1016/j.pmr.2018.12.013
Salazar, M., Portero, P., Zambrano, M., & Rosero, R. (2025). Review of robotic prostheses manufactured with 3D printing: Advances, challenges, and future perspectives. Applied Sciences, 15(3), 1350. https://doi.org/10.3390/app15031350
Serrano, C., Fontenay, S., van den Brink, H., Pineau, J., Prognon, P., & Martelli, N. (2020). Evaluation of 3D printing costs in surgery: A systematic review. International Journal of Technology Assessment in Health Care, 1–7. https://doi.org/10.1017/S0266462320000331
Shuang, F., Hu, W., Shao, Y., Li, H., & Zou, H. (2016). Treatment of intercondylar humeral fractures with 3D-printed osteosynthesis plates. Medicine, 95(3), e2461. https://doi.org/10.1097/MD.0000000000002461
Chen, C., Cai, L., Zheng, W., Wang, J., Guo, X., & Chen, H. (2019). The efficacy of using 3D printing models in the treatment of fractures: A randomized clinical trial. BMC Musculoskeletal Disorders, 20(1), 65. https://doi.org/10.1186/s12891-019-2448-9
He, Y., Zhou, P., & He, C. (2022). Clinical efficacy and safety of surgery combined with 3D printing for tibial plateau fractures: A systematic review and meta-analysis. Annals of Translational Medicine, 10(7), 403. https://doi.org/10.21037/atm-21-7008
Maini, L., Sharma, A., Jha, S., Sharma, A., & Tiwari, A. (2018). Three-dimensional printing and patient-specific pre-contoured plate: Future of acetabulum fracture fixation? European Journal of Trauma and Emergency Surgery, 44(2), 215–224. https://doi.org/10.1007/s00068-016-0738-6
Wood, L., & Ahmed, Z. (2024). Does using 3D printed models for pre-operative planning improve surgical outcomes of foot and ankle fracture fixation? A systematic review and meta-analysis. European Journal of Trauma and Emergency Surgery, 50(1), 21–35. https://doi.org/10.1007/s00068-022-02176-7
Liang, H., Zhang, H., Chen, B., Yang, L., Xu, R., Duan, S., & Cai, Z. (2023). 3D printing technology combined with personalized plates for complex distal intra-articular fractures of the trimalleolar ankle. Scientific Reports, 13(1), 22667. https://doi.org/10.1038/s41598-023-49515-1
Oishi, M., Fukuda, M., Yajima, N., Yoshida, K., Takahashi, M., Hiraishi, T., … Fujii, Y. (2013). Interactive presurgical simulation applying advanced 3D imaging and modeling techniques for skull base and deep tumors. Journal of Neurosurgery, 119(1), 94–105. https://doi.org/10.3171/2013.3.JNS121109
Zhang, J., Tian, W., Chen, J., Yu, J., & Chen, J. (2019). The application of polyetheretherketone (PEEK) implants in cranioplasty. Brain Research Bulletin, 153, 143–149. https://doi.org/10.1016/j.brainresbull.2019.08.010
Jalbert, F., Boetto, S., Nadon, F., Lauwers, F., Schmidt, E., & Lopez, R. (2014). One-step primary reconstruction for complex craniofacial resection with PEEK custom-made implants. Journal of Cranio-Maxillo-Facial Surgery, 42(2), 141–148. https://doi.org/10.1016/j.jcms.2013.04.001
D’Urso, P. S., Thompson, R. G., Atkinson, R. L., Weidmann, M. J., Redmond, M. J., Hall, B. I., … Earwaker, W. J. (1999). Cerebrovascular biomodelling: A technical note. Surgical Neurology, 52(5), 490–500. https://doi.org/10.1016/S0090-3019(99)00143-3
Li, C., Yang, M., Xie, Y., Chen, Z., Wang, C., Bai, Y., … Li, M. (2015). Application of the polystyrene model made by 3-D printing rapid prototyping technology for operation planning in revision lumbar discectomy. Journal of Orthopaedic Science, 20(3), 475–480. https://doi.org/10.1007/s00776-015-0706-8
Galvez, M., Asahi, T., Baar, A., Carcuro, G., Cuchacovich, N., Fuentes, J. A., … Chahin, A. (2018). Use of three-dimensional printing in orthopaedic surgical planning. JAAOS Global Research & Reviews, 2(5), e071. https://doi.org/10.5435/JAAOSGlobal-D-17-00071
Bow, H., Zuckerman, S. L., Griffith, B., Lewis, S., McGruder, C., Pruthi, S., & Parker, S. L. (2020). A 3D-printed simulator and teaching module for placing S2-alar-iliac screws. Operative Neurosurgery, 18(3), 339–346. https://doi.org/10.1093/ons/opz161
Błaszczyk, M., Jabbar, R., Szmyd, B., & Radek, M. (2021). 3D printing of rapid, low-cost and patient-specific models of brain vasculature for use in preoperative planning in clipping of intracranial aneurysms. Journal of Clinical Medicine, 10(6), 1201. https://doi.org/10.3390/jcm10061201
Wang, J. L., Yuan, Z. G., Qian, G. L., Bao, W. Q., & Jin, G. L. (2018). 3D printing of intracranial aneurysm based on intracranial digital subtraction angiography and its clinical application. Medicine, 97(24), e11103. https://doi.org/10.1097/MD.0000000000011103
Hudelist, B., Prebot, J., Lecarpentier, E., & Apra, C. (2024). A realistic aneurysm clipping simulation combining 3D-printed and placenta-based models: How I do it. Acta Neurochirurgica, 166(1), 172. https://doi.org/10.1007/s00701-024-06068-0
Pathak, K., Saikia, R., Das, A., Das, D., Islam, M. A., Pramanik, P., et al. (2023). 3D printing in biomedicine: Advancing personalized care through additive manufacturing. Exploration of Medicine, 4, 1135–1167. https://doi.org/10.37349/emed.2023.00200
Amaya-Rivas, J. L., Perero, B. S., Helguero, C. G., Hurel, J. L., Peralta, J. M., Flores, F. A., & Alvarado, J. D. (2024). Future trends of additive manufacturing in medical applications: An overview. Heliyon, 10(5), e26641. https://doi.org/10.1016/j.heliyon.2024.e26641
Kumar, R., Mehdi, H., Bhati, S. S., et al. (2025). A comprehensive review of advancements in additive manufacturing for 3D printed medical components using diverse materials. Discover Materials, 5, 152. https://doi.org/10.1007/s43939-025-00349-w
Martelli, N., Serrano, C., van den Brink, H., Pineau, J., Prognon, P., Borget, I., & El Batti, S. (2016). Advantages and disadvantages of 3-dimensional printing in surgery: A systematic review. Surgery, 159(6), 1485–1500. https://doi.org/10.1016/j.surg.2015.12.017
McAnena, A. P., McClennen, T., & Zheng, H. (2025). Patient-specific 3-dimensional-printed orthopedic implants and surgical devices are potential alternatives to conventional technology but require additional characterization. Clinical Orthopaedic Surgery, 17(1), 1–15. https://doi.org/10.4055/cios23294
Wong, K. C. (2016). 3D-printed patient-specific applications in orthopedics. Orthopedic Research and Reviews, 8, 57–66. https://doi.org/10.2147/ORR.S99614
Prządka, M., Pająk, W., Kleinrok, J., Pec, J., Michno, K., Karpiński, R., & Baj, J. (2025). Advances in 3D printing applications for personalized orthopedic surgery: From anatomical modeling to patient-specific implants. Journal of Clinical Medicine, 14(11), 3989. https://doi.org/10.3390/jcm14113989
Copyright (c) 2025 Wirginia Bertman, Bartłomiej Czarnecki, Jan Nowak, Barbara Kujawa, Bartosz Zwoliński, Wiktor Kubik, Kacper Sukiennicki, Natalia Kołdej, Zuzanna Kępczyńska, Katarzyna Szewczyk, Kamil Borysewicz, Klaudia Romejko

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

