THE IMPACT OF BLUE LIGHT FROM ELECTRONIC DEVICES ON VISUAL FUNCTION, CIRCADIAN RHYTHM, AND WELLBEING: A SYSTEMATIC REVIEW
Abstract
Modern lifestyles involve increasing exposure to artificial light sources, particularly from electronic devices emitting blue-enriched light. Blue light, due to its short wavelength and high photon energy, may affect retinal structures and disrupt circadian regulation, leading to sleep disturbances. Additionally, recent studies suggest that blue light exposure may influence cognitive performance, alertness, and subjective wellbeing, especially in young adults and physically active populations.
The aim of this systematic review was to synthesize current evidence regarding the effects of artificial blue light on visual function, sleep quality, and human wellbeing. The review explored the underlying biological mechanisms, including the activation of melanopsin-containing intrinsically photosensitive retinal ganglion cells, and evaluated the potential risks associated with prolonged exposure to low-illuminance blue light from digital screens.
Findings indicate a consistent relationship between blue light exposure and disruptions in sleep–wake cycles, with emerging data pointing toward broader psychophysiological implications. The review highlights the need for further research to better define safe exposure thresholds, assess individual sensitivity, and evaluate protective strategies such as blue light filters.
References
Chronobiology in Medicine Editorial Board. (2023). Blue light exposure and its impact on circadian physiology: A contemporary review. Chronobiology in Medicine, 6(1), 10–19. https://doi.org/10.33069/cim.2023.0002
Wood, B., Rea, M. S., Plitnick, B., & Figueiro, M. G. (2013). Light level and duration of exposure determine the impact of self-luminous tablets on melatonin suppression. Applied Ergonomics, 44(2), 237–240. https://doi.org/10.1016/j.apergo.2012.07.008
Nagare, R., Rea, M. S., Plitnick, B., & Figueiro, M. G. (2019). Nighttime melatonin suppression from light exposure in adolescents and adults. Journal of Biological Rhythms, 34(2), 178–194. https://doi.org/10.1177/0748730419828056
Lee, S. H., Jang, H. J., & Kim, Y. K. (2024). The effects of prolonged screen use at night on melatonin, mood, and academic performance in university students. Sleep Medicine Reviews, 68, 101845. https://doi.org/10.1016/j.smrv.2023.101845
Akacem, L. D., Wright, K. P., Jr., & LeBourgeois, M. K. (2023). Sensitivity of the circadian system to evening bright light in preschool-age children. Physiological Reports, 11(2), e15568. https://doi.org/10.14814/phy2.15568
Hale, L., Troxel, W., & Buysse, D. J. (2023). Sleep health: An opportunity for public health to address health equity. Annual Review of Public Health, 44, 369–385. https://doi.org/10.1146/annurev-publhealth-052020-110218
Figueiro, M. G., Rea, M. S., Plitnick, B., & Wood, B. (2022). The influence of blue light on sleep, performance and wellbeing: A systematic review. Frontiers in Neuroscience, 16, 852123. https://doi.org/10.3389/fnins.2022.852123
Chellappa, S. L., Viola, A. U., Schmidt, C., & others. (2012). Human melatonin and alerting response to blue-enriched light depend on a polymorphism in the clock gene PER3. Journal of Clinical Endocrinology & Metabolism, 97(3), E433–E437. https://doi.org/10.1210/jc.2011-3069
Lucas, R. J., Peirson, S. N., Berson, D. M., Brown, T. M., Cooper, H. M., Czeisler, C. A., Figueiro, M. G., Gamlin, P. D., Lockley, S. W., O’Hagan, J. B., Price, L. L., Provencio, I., Skene, D. J., & Brainard, G. C. (2014). Measuring and using light in the melanopsin age. Trends in Neurosciences, 37(1), 1–9. https://doi.org/10.1016/j.tins.2013.10.004
Lucas, R. J., Peirson, S. N., Berson, D. M., Brown, T. M., Cooper, H. M., Czeisler, C. A., Figueiro, M. G., Gamlin, P. D., Lockley, S. W., O’Hagan, J. B., Price, L. L., Provencio, I., Skene, D. J., & Brainard, G. C. (2014). Measuring and using light in the melanopsin age. Trends in Neurosciences, 37(1), 1–9. https://doi.org/10.1016/j.tins.2013.10.004
Lin, J. B., Gerratt, B. W., Bassi, C. J., & Apte, R. S. (2021). Effects of blue light on the ocular surface. Experimental Eye Research, 204, 108460. https://doi.org/10.1016/j.exer.2021.108460
Marek, R., Brignole-Baudouin, F., Baudouin, C., & Denoyer, A. (2022). Blue light exposure and ocular surface inflammation. Ophthalmic Research, 65(2), 123–133. https://doi.org/10.1159/000521123
Organisciak, D. T., & Vaughan, D. K. (2010). Retinal light damage: Mechanisms and protection. Progress in Retinal and Eye Research, 29(2), 113–134. https://doi.org/10.1016/j.preteyeres.2009.11.004
O’Hagan, J. B., Khazova, M., & Price, L. L. A. (2016). Low-energy light bulbs, computers, tablets and the blue light hazard. Eye, 30(2), 230–233. https://doi.org/10.1038/eye.2015.261
Wu, J., Seregard, S., & Algvere, P. V. (2006). Photochemical damage of the retina. Survey of Ophthalmology, 51(5), 461–481. https://doi.org/10.1016/j.survophthal.2006.06.009
Mainster, M. A. (2006). Violet and blue light blocking intraocular lenses: Photoprotection versus photoreception. British Journal of Ophthalmology, 90(6), 784–792. https://doi.org/10.1136/bjo.2005.086553
Lucas, R. J., Peirson, S. N., Berson, D. M., Brown, T. M., Cooper, H. M., Czeisler, C. A., Figueiro, M. G., Gamlin, P. D., Lockley, S. W., O’Hagan, J. B., Price, L. L., Provencio, I., Skene, D. J., & Brainard, G. C. (2014). Measuring and using light in the melanopsin age. Trends in Neurosciences, 37(1), 1–9. https://doi.org/10.1016/j.tins.2013.10.004
Smith, E. L., III, Hung, L. F., & Huang, J. (2012). Protective effects of high ambient lighting on the development of form-deprivation myopia in rhesus monkeys. Investigative Ophthalmology & Visual Science, 53(1), 421–428. https://doi.org/10.1167/iovs.11-8652
Lin, J. B., Gerratt, B. W., Bassi, C. J., & Apte, R. S. (2021). Short-wavelength light-blocking eyeglasses attenuate symptoms of eye fatigue. Investigative Ophthalmology & Visual Science, 62(8), 12. https://doi.org/10.1167/iovs.62.8.12
Figueiro, M. G., Wood, B., Plitnick, B., & Rea, M. S. (2011). The impact of light from computer monitors on melatonin levels in college students. Neuro Endocrinology Letters, 32(2), 158–163. https://doi.org/10.1016/j.jphotobiol.2012.07.008
Tosini, G., Ferguson, I., & Tsubota, K. (2016). Effects of blue light on the circadian system and eye physiology. Molecular Vision, 22, 61–72. https://doi.org/10.63500/mv_v22_61
van der Lely, S. S., Frey, S., Garbazza, C., Wirz-Justice, A., Jenni, O. G., Steiner, R., Wolf, S., Cajochen, C., & Bromundt, V. (2015). Blue blocker glasses as a countermeasure for alerting effects of evening light-emitting screen exposure in male teenagers. Journal of Adolescent Health, 56(1), 113–119. https://doi.org/10.1016/j.jadohealth.2014.08.002
Sasseville, A., Paquet, N., Sévigny, J., & Hébert, M. (2006). Blue blocker glasses impede the capacity of bright light to suppress melatonin production. Journal of Pineal Research, 41(1), 73–78. https://doi.org/10.1111/j.1600-079X.2006.00346.x
Ostrin, L. A. (2019). Ocular and systemic melatonin and the influence of light exposure. Clinical and Experimental Optometry, 102(2), 99–108. https://doi.org/10.1111/cxo.12719
Berson, D. M., Dunn, F. A., & Takao, M. (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science, 295(5557), 1070–1073. https://doi.org/10.1126/science.1067262
Souman, J. L., Tinga, A. M., te Pas, S. F., van Ee, R., & Vlaskamp, B. N. S. (2018). Acute alerting effects of light: A systematic literature review. Behavioural Brain Research, 337, 228–239. https://doi.org/10.1016/j.bbr.2017.09.016
Meesters, Y., Dekker, V., Schlangen, L. J. M., Bos, E. H., & Ruiter, M. J. (2011). The effects of narrow-band blue-light treatment compared to broad-band white-light treatment in seasonal affective disorder. Journal of Affective Disorders, 133(1–2), 160–167. https://doi.org/10.1016/j.jad.2011.03.050
Views:
23
Downloads:
12
Copyright (c) 2025 Olga Żuczek, Adam Żuczek, Kinga Dyndał, Marcelina Broda, Patrycja Jędrzejewska-Rzezak, Katarzyna Urbańska, Izabela Szczap, Anna Hawryluk, Kamil Marzec, Aleksandra Mokrzycka

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.