THE GUT MICROBIOME AND ITS ROLE IN HUMAN HEALTH
Abstract
Introduction: The human gut microbiome has become the subject of intensive scientific research in recent years due to its significant impact on the body. Disturbances in its composition, called dysbiosis are linked to diseases such as inflammatory bowel disease (IBD), obesity, type 2 diabetes, allergies and neuropsychiatric disorders. This review summarizes current knowledge about the gut microbiome - its composition, functions, research methods, therapeutic options and health impact.
Materials and methods: The review was based on an analysis of scientific literature from the PubMed database. The selected publications concerned the composition and development of the microbiome, its function in the pathogenesis of diseases and diagnostic methods and therapeutic strategies.
Results: The gut microbiome is a complex ecosystem of bacteria, viruses, fungi and archaea. It develops from the perinatal period depending on delivery mode, feeding, diet, antibiotics, and lifestyle. It ferments undigested components into short-chain fatty acids (SCFA), synthesizes vitamins, modulates immunity and protects against pathogens. Dysbiosis is linked to chronic inflammation "leaky gut" and metabolic, autoimmune and neuropsychiatric diseases. Therapies include probiotics, prebiotics, synbiotics, diet changes, fecal microbiota transplantation (FMT) and new methods such as bacteriophages or precise microbiome editing using CRISPR-Cas technology (a biological system that bacteria and archaea use to defend against viruses).
Conclusions: Growing evidence supports the critical role of the gut microbiome in health. Although the links between dysbiosis and disease are clear, direct causality remains uncertain. Future research should identify key microorganisms, develop personalized therapies based on microbiota modulation and ensure the safety of treatments. Properly shaping the microbiome may open new possibilities for preventing and treating chronic diseases.
References
Sender, R., Fuchs, S., & Milo, R. (2016). Revised estimates for the number of human and bacteria cells in the body. PLoS Biology, 14(8), e1002533. https://doi.org/10.1371/journal.pbio.1002533
Koh, A., De Vadder, F., Kovatcheva Datchary, P., & Bäckhed, F. (2016). From dietary fiber to host physiology: Short chain fatty acids as key bacterial metabolites. Cell, 165(6), 1332–1345. https://doi.org/10.1016/j.cell.2016.05.041
Gilbert, J. A., Blaser, M. J., Caporaso, J. G., Jansson, J. K., Lynch, S. V., & Knight, R. (2018). Current understanding of the human microbiome. Nature Medicine, 24(4), 392–400. https://doi.org/10.1038/nm.4517
Marchesi, J. R., & Ravel, J. (2015). The vocabulary of microbiome research: a proposal. Microbiome, 3(1), 31. https://doi.org/10.1186/s40168-015-0094-5
Dominguez-Bello, M. G., Costello, E. K., Contreras, M., Magris, M., Hidalgo, G., Fierer, N., & Knight, R. (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences, 107(26), 11971–11975. https://doi.org/10.1073/pnas.1002601107
Zivkovic, A. M., German, J. B., Lebrilla, C. B., & Mills, D. A. (2011). Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proceedings of the National Academy of Sciences of the United States of America, 108(Supplement 1), 4653–4658. https://doi.org/10.1073/pnas.1006823108
Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G. A. D., Gasbarrini, A., & Mele, M. C. (2019). What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms, 7(1), 14. https://doi.org/10.3390/microorganisms7010014
Lupp, C., et al. (2012). Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Proteobacteria. Cell Host & Microbe, 12(5), 482–492. https://doi.org/10.1016/j.chom.2012.09.005
O'Toole, P. W., & Jeffery, I. B. (2015). Gut microbiota and aging. Science, 350(6265), 1214–1215. https://doi.org/10.1126/science.aac8469
Norman JM, Handley SA, Baldridge MT, et al. (2015). Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell, 160(3), 447–460.
https://doi.org/10.1016/j.cell.2015.01.002
Shan, Y., Lee, M., & Chang, E. B. (2022). The Gut Microbiome and Inflammatory Bowel Diseases. Annual Review of Medicine, 73, 455–468. https://doi.org/10.1146/annurev-med-042320-021020
Samuel, B. S., Hansen, E. E., Manchester, J. K., Coutinho, P. M., Henrissat, B., Fulton, R., Latreille, P., Kim, K., Wilson, R. K., & Gordon, J. I. (2007). Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proceedings of the National Academy of Sciences of the United States of America, 104(25), 10643–10648. https://doi.org/10.1073/pnas.0704189104
Borrel, G., Brugère, J.-F., Gribaldo, S., Schmitz, R. A., & Moissl-Eichinger, C. (2020). The host-associated archaeome. Nature Reviews Microbiology, 18(11), 622–636. https://doi.org/10.1038/s41579-020-0407-y
LeBlanc, J. G., Milani, C., Savoy de Giori, G., Sesma, F., van Sinderen, D., & Ventura, M. (2013). Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Current Opinion in Biotechnology, 24(2), 160–168. https://doi.org/10.1016/j.copbio.2012.08.005
Belkaid, Y., & Hand, T. W. (2014). Role of the microbiota in immunity and inflammation. Cell, 157(1), 121–141. https://doi.org/10.1016/j.cell.2014.03.011
Buffie, C. G., & Pamer, E. G. (2013). Microbiota-mediated colonization resistance against intestinal pathogens. Nature Reviews Immunology, 13(11), 790–801. https://doi.org/10.1038/nri3535
Frank, D. N., St Amand, A. L., Feldman, R. A., Boedeker, E. C., Harpaz, N., & Pace, N. R. (2007). Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proceedings of the National Academy of Sciences, 104(934), 13780–13785. https://doi.org/10.1073/pnas.0706625104
Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122), 1027–1031. https://doi.org/10.1038/nature05414
Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., Mende, D. R., Li, J., Xu, J., Li, S., Li, D., Cao, J., Wang, B., Liang, H., Zheng, H., Xie, Y., Tap, J., Lepage, P., Bertalan, M., Batto, J. M., Hansen, T., Le Paslier, D., Linneberg, A., Nielsen, H. B., Pelletier, E., Renault, P., Sicheritz-Pontén, T., Turner, K., Zhu, H., Yu, C., Li, S., Jian, M., Zhou, Y., Li, Y., Zhang, X., Li, S., MetaHIT Consortium, Bork, P., Ehrlich, S. D., & Wang, J. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464(7285), 59–65. https://doi.org/10.1038/nature08821
Cryan, J. F., & Dinan, T. G. (2012). Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nature Reviews Neuroscience, 13(10), 701–712. https://doi.org/10.1038/nrn3346
Sampson, T. R., Debelius, J. W., Thron, T., Janssen, S., Shastri, G. G., Ilhan, Z. E., Challis, C., Schretter, C. E., Rocha, S., Gradinaru, V., Chesselet, M.-F., Keshavarzian, A., Shannon, K. M., Krajmalnik-Brown, R., Wittung-Stafshede, P., Knight, R., & Mazmanian, S. K. (2016). Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell, 167(6), 1469–1480.e12. https://doi.org/10.1016/j.cell.2016.11.018
Carding, S., Verbeke, K., Vipond, D. T., Corfe, B. M., & Owen, L. J. (2015). Dysbiosis of the gut microbiota in disease. Microbial Ecology in Health and Disease, 26, 26191. https://doi.org/10.3402/mehd.v26.26191
Jovel, J., Patterson, J., Wang, W., Hotte, N., O'Keefe, S., Mitchel, T., Perry, T., Kao, D., Mason, A. L., Madsen, K. L., & Wong, G. K.-S. (2016). Characterization of the gut microbiome using 16S or shotgun metagenomics. Frontiers in Microbiology, 7, 459. https://doi.org/10.3389/fmicb.2016.00459
Quince, C., Walker, A. W., Simpson, J. T., Loman, N. J., & Segata, N. (2017). Shotgun metagenomics, from sampling to analysis. Nature Biotechnology, 35(9), 833–844. https://doi.org/10.1038/nbt.3935
Franzosa, E. A., Hsu, T., Sirota-Madi, A., Shafquat, A., Abu-Ali, G., Morgan, X. C., & Huttenhower, C. (2014). Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nature Reviews Microbiology, 13(6), 360–372. https://doi.org/10.1038/nrmicro3451
Nicholson, J. K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., & Pettersson, S. (2012). Host-gut microbiota metabolic interactions. Science, 336(6086), 1262–1267. https://doi.org/10.1126/science.1223813
Wilmes, P., & Bond, P. L. (2004). The application of two dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environmental Microbiology, 6(9), 911–920. https://doi.org/10.1111/j.1462-2920.2004.00687.x
Lagier, J.-C., Hugon, P., Khelaifia, S., Fournier, P.-E., La Scola, B., & Raoult, D. (2015). The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clinical Microbiology Reviews, 28(1), 237–264. https://doi.org/10.1128/CMR.00014-14
Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology, 14(8), 491–502. https://doi.org/10.1038/nrgastro.2017.75
Pattani, R., Palda, V. A., Hwang, S. W., & Shah, P. S. (2013). Probiotics for the prevention of antibiotic-associated diarrhea and Clostridium difficile infection among hospitalized patients: Systematic review and meta-analysis. Open Medicine, 7(2), e56–e67. https://doi.org/10.2478/s11536-013-0012-6
Rahimi, R., Nikfar, S., & Abdollahi, M. (2015). Effectiveness of probiotics in irritable bowel syndrome: Updated systematic review and meta-analysis. World Journal of Gastroenterology, 21(13), 4036–4049. https://doi.org/10.3748/wjg.v21.i13.4036
Yadav, M., Sehrawat, N., Sharma, A. K., Kumar, S., Singh, R., Kumar, A., & Kumar, A. (2024). Synbiotics as potent functional food: Recent updates on therapeutic potential and mechanistic insight. Journal of Food Science and Technology, 61(1), 1–15. https://doi.org/10.1007/s13197-022-05621-y
Cammarota, G., Ianiro, G., Ahern, A., et al. (2017). European consensus conference on faecal microbiota transplantation in clinical practice. Gut, 66(4), 569–580. https://doi.org/10.1136/gutjnl-2016-312701
David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., Ling, A. V., Devlin, A. S., Varma, Y., Fischbach, M. A., Biddinger, S. B., Dutton, R. J., & Turnbaugh, P. J. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–563. https://doi.org/10.1038/nature12820
Khan Mirzaei, M., & Deng, L. (2022). New technologies for developing phage-based tools to manipulate the human microbiome. Trends in Microbiology, 30(2), 131–142. https://doi.org/10.1016/j.tim.2021.04.007
Zmora, N., Suez, J., & Elinav, E. (2019). You are what you eat: Diet, health and the gut microbiota. Nature Reviews Gastroenterology & Hepatology, 16(1), 35–56. https://doi.org/10.1038/s41575-018-0061-2
Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R., & Goodman, A. L. (2019). Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature, 570(7762), 462–467. https://doi.org/10.1038/s41586-019-1291-3
Spanogiannopoulos, P., Bess, E. N., Carmody, R. N., & Turnbaugh, P. J. (2016). The microbial pharmacists within us: A metagenomic view of xenobiotic metabolism. Nature Reviews Microbiology, 14(5), 273–287. https://doi.org/10.1038/nrmicro.2016.17
Forslund, K., Hildebrand, F., Nielsen, T., Falony, G., Le Chatelier, E., Sunagawa, S., Prifti, E., Vieira-Silva, S., Gudmundsdottir, V., Pedersen, H. K., Arumugam, M., Kristiansen, K., Voigt, A. Y., Vestergaard, H., Hercog, R., Costea, P. I., Kultima, J. R., Li, J., Jørgensen, T., ... Bork, P. (2015). Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 528(7581), 262–266. https://doi.org/10.1038/nature15766
Routy, B., Le Chatelier, E., Derosa, L., Duong, C. P. M., Alou, M. T., Daillère, R., ... & Zitvogel, L. (2018). Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science, 359(6371), 91–97. https://doi.org/10.1126/science.aan3706
Views:
27
Downloads:
10
Copyright (c) 2025 Anna Hawryluk, Katarzyna Urbańska, Adam Żuczek, Kinga Dyndał, Marcelina Broda, Olga Żuczek, Izabela Szczap, Kamil Marzec, Aleksandra Mokrzycka, Patrycja Jędrzejewska-Rzezak

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.