CURRENT STATE OF KNOWLEDGE CONCERNING VAGUS NERVE STIMULATION IN TREATMENT OF MAJOR DEPRESSIVE DISORDER
Abstract
Introduction and aim: Vagus Nerve Stimulation (VNS), including its non-invasive form transcutaneous auricular VNS (taVNS), has emerged as a promising treatment for Major Depressive Disorder (MDD), particularly treatment-resistant cases. The aim of this review is to provide a comprehensive review of VNS and taVNS, with a focus on their mechanisms, efficacy, and immunomodulatory effects in depression.
Methods: A systematic review of PubMed literature (2020-2025) was conducted using the terms "Depresion," and either "Transcutaneous Auricular Vagus Nerve Stimulation" or "taVNS" or "Vagus Nerve Stimulation" or "VNS" and “depression” or “Major Depressive Disorder” with studies manually screened for relevance and credibility.
Results: VNS modulates the brain’s monoaminergic systems by enhancing serotonergic and noradrenergic neurotransmission via afferent vagal projections. It also exerts anti-inflammatory effects by activating cholinergic anti-inflammatory pathways that reduce systemic and central neuroinflammation- which has been suggest as an underlying mechanism for the pathophysiology of depression. VNS also influences the microbiota–gut–brain axis, improving intestinal barrier integrity and restoring gut microbial balance. Dysbiosis may be one of the factors involved in the pathogenesis of depression. TaVNS, targeting the auricular branch of the vagus nerve, activates similar neural circuits and shows comparable antidepressant effects with fewer risks. Clinical trials and meta-analyses support its efficacy, especially when combined with pharmacotherapy.
Conclusion: VNS and taVNS represent effective adjunctive treatments for MDD by modulating neurochemical, immunological, and microbiota-related pathways. Further large-scale, controlled trials are needed to clarify optimal stimulation parameters and long-term outcomes.
References
Andalib, S., Divani, A. A., Ayata, C., Baig, S., Arsava, E. M., Topcuoglu, M. A., Cáceres, E. L., Parikh, V., Desai, M. J., Majid, A., Girolami, S., & Di Napoli, M. (2023). Vagus nerve stimulation in ischemic stroke. Current Neurology and Neuroscience Reports, 23(12), 947–962. https://doi.org/10.1007/s11910-023-01323-w
Attenello, F., Amar, A. P., Liu, C., & Apuzzo, M. L. (2015). Theoretical basis of vagus nerve stimulation. Progress in Neurological Surgery, 29, 20–28. https://doi.org/10.1159/000434652
Austelle, C. W., Cox, S. S., Wills, K. E., & Badran, B. W. (2024). Vagus nerve stimulation (VNS): Recent advances and future directions. Clinical Autonomic Research, 34(6), 529–547. https://doi.org/10.1007/s10286-024-01065-w
Austelle, C. W., O’Leary, G. H., Thompson, S., Gruber, E., Kahn, A., Manett, A. J., Short, B., & Badran, B. W. (2022). A comprehensive review of vagus nerve stimulation for depression. Neuromodulation, 25(3), 309–315. https://doi.org/10.1111/ner.13528
Baquiran, M., & Bordoni, B. (2023). Anatomy, head and neck: Anterior vagus nerve. In StatPearls. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK549814/
Chen, Y., Zhang, Y., Wang, J., Li, S., Wang, Y., Zhang, Z., Zhang, J., Xin, C., Wang, Y., & Rong, P. (2023). Anti-neuroinflammation effects of transcutaneous auricular vagus nerve stimulation against depression-like behaviors via hypothalamic α7nAchR/JAK2/STAT3/NF-κB pathway in rats exposed to chronic unpredictable mild stress. CNS Neuroscience & Therapeutics, 29(9), 2634–2644. https://doi.org/10.1111/cns.14207
Fang, Y. T., Lin, Y. T., Tseng, W. L., Tseng, P., Hua, G. L., Chao, Y. J., & Wu, Y. J. (2023). Neuroimmunomodulation of vagus nerve stimulation and the therapeutic implications. Frontiers in Aging Neuroscience, 15, 1173987. https://doi.org/10.3389/fnagi.2023.1173987
Faraji, N., Payami, B., Ebadpour, N., & Gorji, A. (2025). Vagus nerve stimulation and gut microbiota interactions: A novel therapeutic avenue for neuropsychiatric disorders. Neuroscience & Biobehavioral Reviews, 169, 105990. https://doi.org/10.1016/j.neubiorev.2024.105990
Gerges, A. N. H., Williams, E. E. R., Hillier, S., Uy, J., Hamilton, T., Chamberlain, S., & Hordacre, B. (2024). Clinical application of transcutaneous auricular vagus nerve stimulation: A scoping review. Disability and Rehabilitation, 46(24), 5730–5760. https://doi.org/10.1080/09638288.2024.2313123
Gianlorenco, A. C. L., de Melo, P. S., Marduy, A., Kim, A. Y., Kim, C. K., Choi, H., Song, J. J., & Fregni, F. (2022). Electroencephalographic patterns in taVNS: A systematic review. Biomedicines, 10(9), 2208. https://doi.org/10.3390/biomedicines10092208
Go, Y. Y., Ju, W. M., Lee, C. M., Chae, S. W., & Song, J. J. (2022). Different transcutaneous auricular vagus nerve stimulation parameters modulate the anti-inflammatory effects on lipopolysaccharide-induced acute inflammation in mice. Biomedicines, 10(2), 247. https://doi.org/10.3390/biomedicines10020247
Hilz, M. J. (2022). Transcutaneous vagus nerve stimulation: A brief introduction and overview. Autonomic Neuroscience, 243, 103038. https://doi.org/10.1016/j.autneu.2022.103038
Kaelberer, M. M., Rupprecht, L. E., Liu, W. W., Weng, P., & Bohórquez, D. V. (2020). Neuropod cells: The emerging biology of gut–brain sensory transduction. Annual Review of Neuroscience, 43, 337–353. https://doi.org/10.1146/annurev-neuro-091619-022657
Kenny, B. J., & Bordoni, B. (2022). Neuroanatomy, cranial nerve 10 (vagus nerve). In StatPearls. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK549814/
Kraus, C., Quach, D., Sholtes, D. M., Kavakbasi, E., De Zwaef, R., Dibué, M., Zajecka, J., & Baune, B. T. (2022). Setting up a successful vagus nerve stimulation service for patients with difficult-to-treat depression. Neuromodulation, 25(3), 316–326. https://doi.org/10.1016/j.neurom.2021.12.010
Lespérance, P., Desbeaumes Jodoin, V., Drouin, D., Racicot, F., Miron, J. P., Longpré-Poirier, C., Fournier-Gosselin, M. P., Thebault, P., Lapointe, R., Arbour, N., & Cailhier, J. F. (2024). Vagus nerve stimulation modulates inflammation in treatment-resistant depression patients: A pilot study. International Journal of Molecular Sciences, 25(5), 2679. https://doi.org/10.3390/ijms25052679
Li, S., Rong, P., Wang, Y., Jin, G., Hou, X., Li, S., Xiao, X., Zhou, W., Wu, Y., Liu, Y., Zhang, Y., Zhao, B., Huang, Y., Cao, J., Chen, H., Hodges, S., Vangel, M., & Kong, J. (2022). Comparative effectiveness of transcutaneous auricular vagus nerve stimulation vs citalopram for major depressive disorder: A randomized trial. Neuromodulation, 25(3), 450–460. https://doi.org/10.1016/j.neurom.2021.10.021
Margolis, K. G., Cryan, J. F., & Mayer, E. A. (2021). The microbiota–gut–brain axis: From motility to mood. Gastroenterology, 160(5), 1486–1501. https://doi.org/10.1053/j.gastro.2020.10.066
Patros, M., Sivathamboo, S., Simpson, H. D., O’Brien, T. J., & Macefield, V. G. (2025). The physiology, anatomy and stimulation of the vagus nerve in epilepsy. The Journal of Physiology, 603(8), 2201–2217. https://doi.org/10.1113/JP287164
Pigato, G., Rosson, S., Bresolin, N., Toffanin, T., Sambataro, F., Olivo, D., Perini, G., Causin, F., Denaro, L., Landi, A., & D’Avella, D. (2023). Vagus nerve stimulation in treatment-resistant depression: A case series of long-term follow-up. Journal of ECT, 39(1), 23–27. https://doi.org/10.1097/YCT.0000000000000869
Sun, J., Sun, K., Chen, L., Li, X., Xu, K., Guo, C., Ma, Y., Cao, J., Zhang, G., Hong, Y., Wang, Z., Gao, S., Luo, Y., Chen, Q., Ye, W., Yu, X., Xiao, X., Rong, P., Yu, C., & Fang, J. (2024). A predictive study of the efficacy of transcutaneous auricular vagus nerve stimulation in the treatment of major depressive disorder: An fMRI-based machine learning analysis. Asian Journal of Psychiatry, 98, 104079. https://doi.org/10.1016/j.ajp.2024.104079
Tan, C., Qiao, M., Ma, Y., Luo, Y., Fang, J., & Yang, Y. (2023). The efficacy and safety of transcutaneous auricular vagus nerve stimulation in the treatment of depressive disorder: A systematic review and meta-analysis of randomized controlled trials. Journal of Affective Disorders, 337, 37–49. https://doi.org/10.1016/j.jad.2023.05.048
Thompson, S. L., O’Leary, G. H., Austelle, C. W., Gruber, E., Kahn, A. T., Manett, A. J., Short, B., & Badran, B. W. (2021). A review of parameter settings for invasive and non-invasive vagus nerve stimulation (VNS) applied in neurological and psychiatric disorders. Frontiers in Neuroscience, 15, 709436. https://doi.org/10.3389/fnins.2021.709436
Vandewalle, J., Luypaert, A., De Bosscher, K., & Libert, C. (2018). Therapeutic mechanisms of glucocorticoids. Trends in Endocrinology & Metabolism, 29(1), 42–54. https://doi.org/10.1016/j.tem.2017.10.010
Wang, J., Wang, Y., Chen, Y., Zhang, J., Zhang, Y., Li, S., Zhu, H., Song, X., Hou, L., Wang, L., Wang, Y., Zhang, Z., & Rong, P. (2025). Transcutaneous auricular vagus stimulation attenuates LPS-induced depression-like behavior by regulating central α7nAChR/JAK2 signaling. Molecular Neurobiology, 62(3), 3011–3023. https://doi.org/10.1007/s12035-024-04438-4
Wang, J. Y., Zhang, Y., Chen, Y., Wang, Y., Li, S. Y., Wang, Y. F., Zhang, Z. X., Zhang, J., & Rong, P. (2021). Mechanisms underlying antidepressant effect of transcutaneous auricular vagus nerve stimulation on CUMS model rats based on hippocampal α7nAchR/NF-κB signal pathway. Journal of Neuroinflammation, 18(1), 291. https://doi.org/10.1186/s12974-021-02341-6
Wang, Q., Yang, Q., & Liu, X. (2023). The microbiota–gut–brain axis and neurodevelopmental disorders. Protein & Cell, 14(10), 762–775. https://doi.org/10.1093/procel/pwad026
Wang, Y., Zhan, G., Cai, Z., Jiao, B., Zhao, Y., Li, S., & Luo, A. (2021). Vagus nerve stimulation in brain diseases: Therapeutic applications and biological mechanisms. Neuroscience & Biobehavioral Reviews, 127, 37–53. https://doi.org/10.1016/j.neubiorev.2021.04.018
Views:
227
Downloads:
213
Copyright (c) 2025 Julia Guzowska, Barbara Wołoszyn, Patrycja Rzeźnik, Maciej Sobczyk, Weronika Stachera, Aleksandra Chajnowska, Aleksandra Borowy, Wiktoria Suchcicka, Małgorzata Zach, Julia Stępień

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.