DEEP LEARNING IN RADIOGRAPHIC TRIAGE: WORKFLOW OPTIMIZATION TO ADDRESS THE RADIOLOGIST WORKFORCE CRISIS
Abstract
Background: The global radiologist workforce faces a systemic crisis where imaging volume growth significantly outpaces specialist capacity, reducing per-image interpretation time from 16.0 to 2.9 seconds. This chronic overload contributes to burnout rates between 34% and 39% and increases the risk of diagnostic errors when daily productivity is exceeded by approximately 21%.
Methods: A comprehensive literature review examined peer-reviewed studies published between 2015 and 2025. The analysis focused on the efficacy and sociotechnical impact of deep learning (DL) models across four critical pathologies: intracranial hemorrhage (ICH), large vessel occlusion (LVO) stroke, pulmonary embolism (PE), and pneumothorax.
Results: DL models, primarily Convolutional Neural Networks and Vision Transformers, demonstrate high diagnostic accuracy, with pooled sensitivities and specificities frequently reaching 90%. "Active reprioritization" significantly reduces report turnaround times, yielding median savings of 12.3 minutes for PE and 20.5 minutes for stroke. For outpatient ICH, time-to-diagnosis dropped from 512 minutes to 19 minutes. In acute stroke care, AI facilitation resulted in a 30.2-minute reduction in door-to-treatment times and improved discharge NIHSS scores.
Conclusions: DL triage serves as a vital sociotechnical intervention to preserve patient safety amidst diagnostic overload. Its primary clinical value resides in workflow orchestration rather than standalone diagnosis. Successful implementation requires integrated "human-in-the-loop" systems to mitigate automation bias and the cognitive time penalty associated with false positives.
References
Abed, S., Hergan, K., Dörrenberg, J., Brandstetter, L., & Lauschmann, M. (2025). Artificial intelligence for detecting pulmonary embolisms via CT: A workflow-oriented implementation. Current Medical Imaging, 21. https://doi.org/10.2174/0115734056367860250630072749
Alhasan, M. S., Azzam, A. Y., Alhasan, A. S., Kalyanpur, A., Alharthi, O. A., Khalil, M., Dmytriw, A., Essibayi, M. A., Feltrin, F., & Milburn, J. (2025). Diagnostic performance and clinical applications of artificial intelligence for intracranial bleeding detection: A meta-analysis. Brain and Spine, 5. https://doi.org/10.1016/j.bas.2025.105866
Ammari, S., Camez, A. O., Ayobi, A., Quenet, S., Zemmouri, A., Mniai, E. M., Chaibi, Y., Franciosini, A., Clavel, L., Bidault, F., Muller, S., Lassau, N., Balleyguier, C., & Assi, T. (2024). Contribution of an artificial intelligence tool in the detection of incidental pulmonary embolism on oncology assessment scans. Life, 14(11). https://doi.org/10.3390/life14111347
Amukotuwa, S. A., Straka, M., Smith, H., Chandra, R. V., Dehkharghani, S., Fischbein, N. J., & Bammer, R. (2019). Automated detection of intracranial large vessel occlusions on computed tomography angiography: A single center experience. Stroke, 50(10), 2790–2798. https://doi.org/10.1161/STROKEAHA.119.026259
Annarumma, M., Withey, S. J., Bakewell, R. J., Pesce, E., Goh, V., & Montana, G. (2019). Automated triaging of adult chest radiographs with deep artificial neural networks. Radiology, 291(1), 196–202. https://doi.org/10.1148/radiol.2018180921
Arbabshirani, M. R., Fornwalt, B. K., Mongelluzzo, G. J., Suever, J. D., Geise, B. D., Patel, A. A., & Moore, G. J. (2018). Advanced machine learning in action: Identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration. npj Digital Medicine, 1(1). https://doi.org/10.1038/s41746-017-0015-z
Baltruschat, I., Steinmeister, L., Nickisch, H., Saalbach, A., Grass, M., Adam, G., Knopp, T., & Ittrich, H. (2020). Smart chest X-ray worklist prioritization using artificial intelligence: A clinical workflow simulation. European Radiology, 31(6), 3813–3819. https://doi.org/10.1007/s00330-020-07480-7
Batra, K., Xi, Y., Bhagwat, S., Espino, A., & Peshock, R. M. (2023). Radiologist worklist reprioritization using artificial intelligence: Impact on report turnaround times for CTPA examinations positive for acute pulmonary embolism. American Journal of Roentgenology, 221(3), 324–333. https://doi.org/10.2214/AJR.22.28949
Brin, D., Gilat, E. K., Raskin, D., & Goitein, O. (2025). Evaluation of AI-based detection of incidental pulmonary emboli in cardiac CT angiography scans. International Journal of Cardiovascular Imaging, 41(8), 1567–1575. https://doi.org/10.1007/s10554-025-03456-0
Bruls, R. J. M., & Kwee, R. M. (2020). Workload for radiologists during on-call hours: Dramatic increase in the past 15 years. Insights into Imaging, 11(1). https://doi.org/10.1186/s13244-020-00925-z
Dal, I., & Kaya, H. B. (2025). Multidisciplinary evaluation of an AI-based pneumothorax detection model: Clinical comparison with physicians in edge and cloud environments. Journal of Multidisciplinary Healthcare, 18, 4099–4111. https://doi.org/10.2147/JMDH.S535405
Del Gaizo, A. J., Osborne, T. F., Shahoumian, T., & Sherrier, R. (2024). Deep learning to detect intracranial hemorrhage in a national teleradiology program and the impact on interpretation time. Radiology: Artificial Intelligence, 6(5). https://doi.org/10.1148/ryai.240067
Ginat, D. T. (2020). Analysis of head CT scans flagged by deep learning software for acute intracranial hemorrhage. Neuroradiology, 62(3), 335–340. https://doi.org/10.1007/s00234-019-02330-w
Hassan, A. E., Ringheanu, V. M., Rabah, R. R., Preston, L., Tekle, W. G., & Qureshi, A. I. (2020). Early experience utilizing artificial intelligence shows significant reduction in transfer times and length of stay in a hub and spoke model. Interventional Neuroradiology, 26(5), 615–622. https://doi.org/10.1177/1591019920953055
Hillis, J. M., Bizzo, B. C., Mercaldo, S., Chin, J. K., Newbury-Chaet, I., Digumarthy, S. R., Gilman, M. D., Muse, V. V., Bottrell, G., Seah, J. C. Y., Jones, C. M., Kalra, M. K., & Dreyer, K. J. (2022). Evaluation of an artificial intelligence model for detection of pneumothorax and tension pneumothorax in chest radiographs. JAMA Network Open, 5(12). https://doi.org/10.1001/jamanetworkopen.2022.47172
Ho, C. W., Wu, Y. L., Chen, Y. C., Ju, Y. J., & Wu, M. T. (2025). Impact of AI assistance in pneumothorax detection on chest radiographs among readers of varying experience. Diagnostics, 15(20). https://doi.org/10.3390/diagnostics15202639
Huang, S. C., Kothari, T., Banerjee, I., Chute, C., Ball, R. L., Borus, N., Huang, A., Patel, B. N., Rajpurkar, P., Irvin, J., Dunnmon, J., Bledsoe, J., Shpanskaya, K., Dhaliwal, A., Zamanian, R., Ng, A. Y., & Lungren, M. P. (2020). PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging. npj Digital Medicine, 3(1). https://doi.org/10.1038/s41746-020-0266-y
Huhtanen, H., Nyman, M., Mohsen, T., Virkki, A., Karlsson, A., & Hirvonen, J. (2022). Automated detection of pulmonary embolism from CT-angiograms using deep learning. BMC Medical Imaging, 22(1). https://doi.org/10.1186/s12880-022-00763-z
Kasalak, Ö., Alnahwi, H., Toxopeus, R., Pennings, J. P., Yakar, D., & Kwee, T. C. (2023). Work overload and diagnostic errors in radiology. European Journal of Radiology, 167. https://doi.org/10.1016/j.ejrad.2023.111032
Kim, B., Romeijn, S., van Buchem, M., Mehrizi, M. H. R., & Grootjans, W. (2024). A holistic approach to implementing artificial intelligence in radiology. Insights into Imaging, 15(1). https://doi.org/10.1186/s13244-023-01586-4
Kim, J., Jang, J., Oh, S. W., Lee, H. Y., Min, E. J., Choi, J. W., & Ahn, K. J. (2025). Impact of a computed tomography-based artificial intelligence software on radiologists’ workflow for detecting acute intracranial hemorrhage. Diagnostic and Interventional Radiology, 31(5), 518–525. https://doi.org/10.4274/dir.2025.253301
Kolossváry, M., Raghu, V. K., Nagurney, J. T., Hoffmann, U., & Lu, M. T. (2023). Deep learning analysis of chest radiographs to triage patients with acute chest pain syndrome. Radiology, 306(2). https://doi.org/10.1148/radiol.221926
Lim, Y. S., Kim, E., Choi, W. S., Yang, H. J., Moon, J. Y., Jang, J. H., Cho, J., Choi, J., & Woo, J. H. (2025). Non-contrast computed tomography-based triage and notification for large vessel occlusion stroke: A before and after study utilizing artificial intelligence on treatment times and outcomes. Journal of Clinical Medicine, 14(4). https://doi.org/10.3390/jcm14041281
Maghami, M., Sattari, S. A., Tahmasbi, M., Panahi, P., Mozafari, J., & Shirbandi, K. (2023). Diagnostic test accuracy of machine learning algorithms for the detection of intracranial hemorrhage: A systematic review and meta-analysis study. BioMedical Engineering OnLine, 22(1). https://doi.org/10.1186/s12938-023-01172-1
Markotić, V., Pokrajac-Bulian, T., Radoš, M., Madžar, T., & Penezić, A. (2021). The radiologist workload increase; where is the limit?: Mini review and case study. Psychiatria Danubina, 33(Suppl 4), 606–607.
Matsoukas, S., Stein, L. K., & Fifi, J. (2023). Artificial intelligence-assisted software significantly decreases all workflow metrics for large vessel occlusion transfer patients, within a large spoke and hub system. Cerebrovascular Diseases Extra, 13(1), 41–46. https://doi.org/10.1159/000529077
McDonald, R. J., Schwartz, K. M., Eckel, L. J., Diehn, F. E., Hunt, C. H., Bartholmai, B. J., Erickson, B. J., & Kallmes, D. F. (2015). The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload. Academic Radiology, 22(9), 1191–1198. https://doi.org/10.1016/j.acra.2015.05.007
Momin, E., Cook, T., Gershon, G., Barr, J., De Cecco, C. N., & Van Assen, M. (2025). Systematic review on the impact of deep learning-driven worklist triage on radiology workflow and clinical outcomes. European Radiology, 35(11), 6879–6893. https://doi.org/10.1007/s00330-025-11674-2
Mosquera, C., Diaz, F. N., Binder, F., Rabellino, J. M., Benitez, S. E., Beresñak, A. D., Seehaus, A., Ducrey, G., Ocantos, J. A., & Luna, D. R. (2020). Chest X-ray automated triage: A semiologic approach designed for clinical implementation, exploiting different types of labels through a combination of four deep learning architectures. arXiv. https://doi.org/10.48550/arXiv.2012.12712
Nightingale, J., Etty, S., Snaith, B., Sevens, T., Appleyard, R., & Kelly, S. (2024). Establishing the size and configuration of the imaging support workforce: A census of national workforce data in England. BJR|Open, 6(1). https://doi.org/10.1093/bjro/tzae026
Novak, A., Ather, S., Gill, A., Aylward, P., Maskell, G., Cowell, G. W., Morgado, A. T. E., Duggan, T., Keevill, M., Gamble, O., Akrama, O., Belcher, E., Taberham, R., Hallifax, R., Bahra, J., Banerji, A., Bailey, J., James, A., Ansaripour, A., … Gleeson, F. (2024). Evaluation of the impact of artificial intelligence-assisted image interpretation on the diagnostic performance of clinicians in identifying pneumothoraces on plain chest X-ray: A multi-case multi-reader study. Emergency Medicine Journal, 41(10), 602–609. https://doi.org/10.1136/emermed-2023-213620
O’Neill, T. J., Xi, Y., Stehel, E., Browning, T., Ng, Y. S., Baker, C., & Peshock, R. M. (2021). Active reprioritization of the reading worklist using artificial intelligence has a beneficial effect on the turnaround time for interpretation of head CT with intracranial hemorrhage. Radiology: Artificial Intelligence, 3(2). https://doi.org/10.1148/ryai.2020200024
Peng, Y. C., Lee, W. J., Chang, Y. C., Chan, W. P., & Chen, S. J. (2022). Radiologist burnout: Trends in medical imaging utilization under the national health insurance system with the universal code bundling strategy in an academic tertiary medical centre. European Journal of Radiology, 157. https://doi.org/10.1016/j.ejrad.2022.110596
Plesner, L. L., Müller, F. C., Brejnebøl, M. W., Laustrup, L. C., Rasmussen, F., Nielsen, O. W., Boesen, M., & Brun Andersen, M. (2023). Commercially available chest radiograph AI tools for detecting airspace disease, pneumothorax, and pleural effusion. Radiology, 308(3). https://doi.org/10.1148/radiol.231236
Rava, R. A., Seymour, S. E., LaQue, M. E., Peterson, B. A., Snyder, K. V., Mokin, M., Waqas, M., Hoi, Y., Davies, J. M., Levy, E. I., Siddiqui, A. H., & Ionita, C. N. (2021). Assessment of an artificial intelligence algorithm for detection of intracranial hemorrhage. World Neurosurgery, 150, e209–e217. https://doi.org/10.1016/j.wneu.2021.02.134
Sarhan, A., Sarhan, K., Ghanm, T., Aldemerdash, M., Mustafa, M., Helal, M., Hamam, N., Alsalhen, B., & Ebada, M. (2024). The diagnostic performance of Viz-ai and RAPID artificial intelligence algorithms for the detection of large vessel occlusions: A systematic review and meta-analysis. Stroke: Vascular and Interventional Neurology, 4(S1). https://doi.org/10.1161/svin.04.suppl_1.152
Savage, C. H., Tanwar, M., Elkassem, A. A., Sturdivant, A., Hamki, O., Sotoudeh, H., Sirineni, G., Singhai, A., Milner, D., Jones, J., Rehder, D., Li, M., Li, Y., Junck, K., Tridandapani, S., Rothenberg, S. A., & Smith, A. D. (2024). Prospective evaluation of artificial intelligence triage of intracranial hemorrhage on noncontrast head CT examinations. American Journal of Roentgenology, 223(5). https://doi.org/10.2214/AJR.24.31639
Schmuelling, L., Franzeck, F. C., Nickel, C. H., Mansella, G., Bingisser, R., Schmidt, N., Stieltjes, B., Bremerich, J., Sauter, A. W., Weikert, T., & Sommer, G. (2021). Deep learning-based automated detection of pulmonary embolism on CT pulmonary angiograms: No significant effects on report communication times and patient turnaround in the emergency department nine months after technical implementation. European Journal of Radiology, 141. https://doi.org/10.1016/j.ejrad.2021.109816
Shapiro, J., Reichard, A., & Muck, P. E. (2024). New diagnostic tools for pulmonary embolism detection. Methodist DeBakey Cardiovascular Journal, 20(3), 5–12. https://doi.org/10.14797/mdcvj.1342
Shlobin, N. A., Baig, A. A., Waqas, M., Patel, T. R., Dossani, R. H., Wilson, M., Cappuzzo, J. M., Siddiqui, A. H., Tutino, V. M., & Levy, E. I. (2022). Artificial intelligence for large-vessel occlusion stroke: A systematic review. World Neurosurgery, 159, 207–220.e1. https://doi.org/10.1016/j.wneu.2021.12.004
Soun, J. E., Chow, D. S., Nagamine, M., Takhtawala, R. S., Filippi, C. G., Yu, W., & Chang, P. D. (2021). Artificial intelligence and acute stroke imaging. American Journal of Neuroradiology, 42(1), 2–11. https://doi.org/10.3174/ajnr.A6883
Sugibayashi, T., Walston, S. L., Matsumoto, T., Mitsuyama, Y., Miki, Y., & Ueda, D. (2023). Deep learning for pneumothorax diagnosis: A systematic review and meta-analysis. European Respiratory Review, 32(168). https://doi.org/10.1183/16000617.0259-2022
Thakore, N. L., Lan, M., Winkel, A. F., Vieira, D. L., & Kang, S. K. (2024). Best practices: Burnout is more than binary. American Journal of Roentgenology, 223(4). https://doi.org/10.2214/AJR.24.31111
Thompson, Y. L. E., Fergus, J., Chung, J., Delfino, J. G., Chen, W., Levine, G. M., & Samuelson, F. W. (2025). Impact of AI-triage on radiologist report turnaround time: Real-world time-savings and insights from model predictions. Journal of the American College of Radiology. https://doi.org/10.1016/j.jacr.2025.07.033
Topff, L., Ranschaert, E. R., Bartels-Rutten, A., Negoita, A., Menezes, R., Beets-Tan, R. G. H., & Visser, J. J. (2023). Artificial intelligence tool for detection and worklist prioritization reduces time to diagnosis of incidental pulmonary embolism at CT. Radiology: Cardiothoracic Imaging, 5(2). https://doi.org/10.1148/ryct.220163
Villringer, K., Sokiranski, R., Opfer, R., Spies, L., Hamann, M., Bormann, A., Brehmer, M., Galinovic, I., & Fiebach, J. B. (2025). An artificial intelligence algorithm integrated into the clinical workflow can ensure high quality acute intracranial hemorrhage CT diagnostic. Clinical Neuroradiology, 35(1), 115–122. https://doi.org/10.1007/s00062-024-01461-9
Wu, Y., Iorga, M., Badhe, S., Zhang, J., Cantrell, D. R., Tanhehco, E. J., Szrama, N., Naidech, A. M., Drakopoulos, M., Hasan, S. T., Patel, K. M., Hijaz, T. A., Russell, E. J., Lalvani, S., Adate, A., Parrish, T. B., Katsaggelos, A. K., & Hill, V. B. (2024). Precise image-level localization of intracranial hemorrhage on head CT scans with deep learning models trained on study-level labels. Radiology: Artificial Intelligence, 6(6). https://doi.org/10.1148/ryai.230296
Zebrowitz, E., Dadoo, S., Brabant, P., Uddin, A., Aifuwa, E., Maraia, D., Ettienne, M., Yakubov, N., Babu, M., & Babu, B. (2024). The impact of artificial intelligence on large vessel occlusion stroke detection and management: A systematic review meta-analysis. medRxiv. https://doi.org/10.1101/2024.03.03.24303653
Views:
39
Downloads:
8
Copyright (c) 2025 Agnieszka Szreiber, Aleksandra Grygorowicz, Klaudia Baran, Michał Ględa, Michał Szyszka, Weronika Radecka, Weronika Kozak, Karol Grela, Karolina Nowacka, Kamil Jabłoński, Anna Woźniak

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

