THE ROLE OF GUT MICROBIOTA IN RHEUMATIC DISEASES: CURRENT EVIDENCE AND FUTURE DIRECTIONS
Abstract
The gut microbiota plays a fundamental role in sustaining physiological homeostasis, and its disruption–referred to as dysbiosis – has been increasingly associated with the pathogenesis of autoimmune disorders, including rheumatic diseases. Growing evidence underscores the complex bidirectional interactions between the gut microbial community and the host immune system, interactions that may critically influence the initiation and progression of conditions such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and psoriatic arthritis (PsA).
This review synthesizes current knowledge on the relationship between gut microbiota composition and rheumatic disease, with particular emphasis on the underlying immunological mechanisms. It delineates characteristic alterations in microbial profiles reported in patients with selected rheumatic conditions and evaluates how such perturbations may shape immune responses.
Furthermore, the paper examines emerging therapeutic strategies aimed at modulating the gut microbiota, including probiotics, prebiotics, targeted dietary interventions, and the increasingly explored approach of fecal microbiota transplantation (FMT). By critically assessing existing evidence, the review addresses the efficacy and safety of microbiota-centered interventions and outlines prospective avenues for their integration as adjunctive therapies in rheumatic disease management.
References
Gori, S., Inno, A., Belluomini, L., Bocus, P., Bisoffi, Z., Russo, A., & Arcaro, G. (2019). Gut microbiota and cancer: How gut microbiota modulates activity, efficacy and toxicity of antitumoral therapy. Critical Reviews in Oncology/Hematology, 143, 139–147. https://doi.org/10.1016/j.critrevonc.2019.09.003
Mousavinasab, F., Karimi, R., Taheri, S., Ahmadvand, F., Sanaaee, S., Najafi, S., Halvaii, M. S., Haghgoo, A., Zamany, M., Majidpoor, J., Khosravifar, M., Baniasadi, M., Talebi, M., Movafagh, A., Aghaei-Zarch, S. M., Khorram, N., Farnia, P., & Kalhor, K. (2023). Microbiome modulation in inflammatory diseases: Progress to microbiome genetic engineering. Cancer Cell International, 23(1), Article 271. https://doi.org/10.1186/s12935-023-03095-2
Zhang, W., Ye, Y., Song, J., Sang, T., Xia, T., Xie, L., Qiu, X., Zeng, Q., & Luo, X. (2023). Research progress of microbiota-gut-brain axis in Parkinson’s disease. Journal of Integrative Neuroscience, 22(6), Article 157. https://doi.org/10.31083/j.jin2206157
Requena, T., & Velasco, M. (2021). The human microbiome in sickness and in health. Revista Clínica Española, 221(4), 233–240. https://doi.org/10.1016/j.rceng.2019.07.018
Wastyk, H. C., Fragiadakis, G. K., Perelman, D., Dahan, D., Merrill, B. D., Yu, F. B., Topf, M., Gonzalez, C. G., Van Treuren, W., Han, S., Robinson, J. L., Elias, J. E., Sonnenburg, E. D., Gardner, C. D., & Sonnenburg, J. L. (2021). Gut-microbiota-targeted diets modulate human immune status. Cell, 184(16), 4137–4153.e14. https://doi.org/10.1016/j.cell.2021.06.019
Martinez-Medina, M., Denizot, J., Dreux, N., Robin, F., Billard, E., Bonnet, R., Darfeuille-Michaud, A., & Barnich, N. (2014). Western diet induces dysbiosis with increased E. coli in CEABAC10 mice, alters host barrier function favouring AIEC colonisation. Gut, 63(1), 116–124. https://doi.org/10.1136/gutjnl-2012-304119
Dominguez-Bello, M. G., Godoy-Vitorino, F., Knight, R., & Blaser, M. J. (2019). Role of the microbiome in human development. Gut, 68(6), 1108–1114. https://doi.org/10.1136/gutjnl-2018-317503
Kimura, I., Ichimura, A., Ohue-Kitano, R., & Igarashi, M. (2020). Free fatty acid receptors in health and disease. Physiological Reviews, 100(1), 171–210. https://doi.org/10.1152/physrev.00041.2018
Jiao, Y., Wu, L., Huntington, N. D., & Zhang, X. (2020). Crosstalk between gut microbiota and innate immunity and its implication in autoimmune diseases. Frontiers in Immunology, 11, Article 282. https://doi.org/10.3389/fimmu.2020.00282
Zheng, D., Liwinski, T., & Elinav, E. (2020). Interaction between microbiota and immunity in health and disease. Cell Research, 30(6), 492–506. https://doi.org/10.1038/s41422-020-0332-7
Vancamelbeke, M., & Vermeire, S. (2017). The intestinal barrier: A fundamental role in health and disease. Expert Review of Gastroenterology & Hepatology, 11(9), 821–834. https://doi.org/10.1080/17474124.2017.1343143
Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L., & Gordon, J. I. (2011). Human nutrition, the gut microbiome and the immune system. Nature, 474(7351), 327–336. https://doi.org/10.1038/nature10213
Soderholm, A. T., & Pedicord, V. A. (2019). Intestinal epithelial cells: At the interface of the microbiota and mucosal immunity. Immunology, 158(4), 267–280. https://doi.org/10.1111/imm.13117
McComb, S., Thiriot, A., Akache, B., Krishnan, L., & Stark, F. (2019). Introduction to the immune system. In Immunoproteomics: Methods and Protocols (pp. 1–24).
Ullah, H., Arbab, S., Tian, Y., Chen, Y., Liu, C. Q., Li, Q., & Li, K. (2024). Crosstalk between gut microbiota and host immune system and its response to traumatic injury. Frontiers in Immunology, 15, Article 1413485. https://doi.org/10.3389/fimmu.2024.1413485
Frazzei, G., van Vollenhoven, R. F., de Jong, B. A., Siegelaar, S. E., & van Schaardenburg, D. (2022). Preclinical autoimmune disease: A comparison of rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis and type 1 diabetes. Frontiers in Immunology, 13, Article 899372. https://doi.org/10.3389/fimmu.2022.899372
Jubair, W. K., Hendrickson, J. D., Severs, E. L., Schulz, H. M., Adhikari, S., Ir, D., Pagan, J. D., Anthony, R. M., Robertson, C. E., Frank, D. N., Banda, N. K., & Kuhn, K. A. (2018). Modulation of inflammatory arthritis in mice by gut microbiota through mucosal inflammation and autoantibody generation. Arthritis & Rheumatology, 70(8), 1220–1233. https://doi.org/10.1002/art.40490
Bellando-Randone, S., Russo, E., Venerito, V., Matucci-Cerinic, M., Iannone, F., Tangaro, S., Amedei, A. (2021). Exploring the oral microbiome in rheumatic diseases, state of art and future prospective in personalized medicine with an AI approach. Journal of Personalized Medicine, 11(7), Article 625. https://doi.org/10.3390/jpm11070625
Van de Wiele, T., Van Praet, J. T., Marzorati, M., Drennan, M. B., & Elewaut, D. (2016). How the microbiota shapes rheumatic diseases. Nature Reviews Rheumatology, 12(7), 398–411. https://doi.org/10.1038/nrrheum.2016.85
Chen, B., Sun, L., & Zhang, X. (2017). Integration of microbiome and epigenome to decipher the pathogenesis of autoimmune diseases. Journal of Autoimmunity, 83, 31–42. https://doi.org/10.1016/j.jaut.2017.03.009
Scherer, H. U., Häupl, T., & Burmester, G. R. (2020). The etiology of rheumatoid arthritis. Journal of Autoimmunity, 110, Article 102400. https://doi.org/10.1016/j.jaut.2019.102400
Esberg, A., Johansson, L., Johansson, I., & Dahlqvist, S. R. (2021). Oral microbiota identifies patients in early onset rheumatoid arthritis. Microorganisms, 9(8), Article 1657. https://doi.org/10.3390/microorganisms9081657
Shin, C., & Kim, Y. K. (2019). Autoimmunity in microbiome-mediated diseases and novel therapeutic approaches. Current Opinion in Pharmacology, 49, 34–42. https://doi.org/10.1016/j.coph.2019.04.018
Zhang, X., Chen, B. D., Zhao, L. D., & Li, H. (2020). The gut microbiota: Emerging evidence in autoimmune diseases. Trends in Molecular Medicine, 26(9), 862–873. https://doi.org/10.1016/j.molmed.2020.04.001
Wang, Y., Yin, Y., Chen, X., Zhao, Y., Wu, Y., Li, Y., Wang, X., Chen, H., & Xiang, C. (2019). Induction of intestinal Th17 cells by flagellins from segmented filamentous bacteria. Frontiers in Immunology, 10, Article 2750. https://doi.org/10.3389/fimmu.2019.02750
Chen, X., & Oppenheim, J. J. (2014). Th17 cells and Tregs: Unlikely allies. Journal of Leukocyte Biology, 95(5), 723–731. https://doi.org/10.1189/jlb.1213633
Cheng, H., Guan, X., Chen, D., & Ma, W. (2019). The Th17/Treg cell balance: A gut microbiota-modulated story. Microorganisms, 7(12), Article 583. https://doi.org/10.3390/microorganisms7120583
Zhang, X., Chen, B. D., Zhao, L. D., & Li, H. (2020). The gut microbiota: Emerging evidence in autoimmune diseases. Trends in Molecular Medicine, 26(9), 862–873. https://doi.org/10.1016/j.molmed.2020.04.001
Li, Y., Zhang, S. X., Yin, X. F., Zhang, M. X., Qiao, J., Xin, X. H., Chang, M. J., Gao, C., Li, Y. F., & Li, X. F. (2021). The gut microbiota and its relevance to peripheral lymphocyte subpopulations and cytokines in patients with rheumatoid arthritis. Journal of Immunology Research, 2021, Article 6665563. https://doi.org/10.1155/2021/6665563
Zhang, X., Chen, B. D., Zhao, L. D., & Li, H. (2020). The gut microbiota: Emerging evidence in autoimmune diseases. Trends in Molecular Medicine, 26(9), 862–873. https://doi.org/10.1016/j.molmed.2020.04.001
Brandl, C., Bucci, L., Schett, G., & Zaiss, M. M. (2021). Crossing the barriers: Revisiting the gut feeling in rheumatoid arthritis. European Journal of Immunology, 51(4), 798–810. https://doi.org/10.1002/eji.202048876
Pacifici, R. (2016). T cells, osteoblasts, and osteocytes: Interacting lineages key for the bone anabolic and catabolic activities of parathyroid hormone. Annals of the New York Academy of Sciences, 1364(1), 11–24. https://doi.org/10.1111/nyas.12969
Chen, J., Wright, K., Davis, J. M., Jeraldo, P., Marietta, E. V., Murray, J., Nelson, H., Matteson, E. L., & Taneja, V. (2016). An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Medicine, 8(1), Article 43. https://doi.org/10.1186/s13073-016-0299-7
Zhou, L., Zhang, M., Wang, Y., Dorfman, R. G., Liu, H., Yu, T., Chen, X., Tang, D., Xu, L., Yin, Y., Pan, Y., Zhou, Q., Zhou, Y., & Yu, C. (2018). Faecalibacterium prausnitzii produces butyrate to maintain Th17/Treg balance and to ameliorate colorectal colitis by inhibiting histone deacetylase 1. Inflammatory Bowel Diseases, 24(9), 1926–1940. https://doi.org/10.1093/ibd/izy182
Matei, D. E., Menon, M., Alber, D. G., Smith, A. M., Nedjat-Shokouhi, B., Fasano, A., Magill, L., Duhlin, A., Bitoun, S., Gleizes, A., Hacein-Bey-Abina, S., Manson, J. J., Rosser, E. C., ABIRISK Consortium, Klein, N., Blair, P. A., & Mauri, C. (2021). Intestinal barrier dysfunction plays an integral role in arthritis pathology and can be targeted to ameliorate disease. Med, 2(7), 864–883.e9. https://doi.org/10.1016/j.medj.2021.04.013
Han, S., Zhuang, H., Shumyak, S., Yang, L., & Reeves, W. H. (2015). Mechanisms of autoantibody production in systemic lupus erythematosus. Frontiers in Immunology, 6, Article 228. https://doi.org/10.3389/fimmu.2015.00228
Deng, Y., & Tsao, B. P. (2017). Updates in lupus genetics. Current Rheumatology Reports, 19(11), Article 68. https://doi.org/10.1007/s11926-017-0695-z
Parks, C. G., de Souza Espindola Santos, A., Barbhaiya, M., & Costenbader, K. H. (2017). Understanding the role of environmental factors in the development of systemic lupus erythematosus. Best Practice & Research Clinical Rheumatology, 31(3), 306–320. https://doi.org/10.1016/j.berh.2017.09.005
He, Z., Shao, T., Li, H., Xie, Z., & Wen, C. (2016). Alterations of the gut microbiome in Chinese patients with systemic lupus erythematosus. Gut Pathogens, 8, Article 64. https://doi.org/10.1186/s13099-016-0146-9
Azzouz, D., Omarbekova, A., Heguy, A., Schwudke, D., Gisch, N., Rovin, B. H., Caricchio, R., Buyon, J. P., Alekseyenko, A. V., & Silverman, G. J. (2019). Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal. Annals of the Rheumatic Diseases, 78(7), 947–956. https://doi.org/10.1136/annrheumdis-2018-214856
Assimakopoulos, S. F., Triantos, C., Thomopoulos, K., Fligou, F., Maroulis, I., Marangos, M., & Gogos, C. A. (2018). Gut-origin sepsis in the critically ill patient: Pathophysiology and treatment. Infection, 46(6), 751–760. https://doi.org/10.1007/s15010-018-1178-5
Martin-Gallausiaux, C., Larraufie, P., Jarry, A., Béguet-Crespel, F., Marinelli, L., Ledue, F., Reimann, F., Blottière, H. M., & Lapaque, N. (2018). Butyrate produced by commensal bacteria down-regulates indolamine 2,3-dioxygenase 1 (IDO-1) expression via a dual mechanism in human intestinal epithelial cells. Frontiers in Immunology, 9, Article 2838. https://doi.org/10.3389/fimmu.2018.02838
Azzouz, D., Omarbekova, A., Heguy, A., Schwudke, D., Gisch, N., Rovin, B. H., Caricchio, R., Buyon, J. P., Alekseyenko, A. V., & Silverman, G. J. (2019). Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal. Annals of the Rheumatic Diseases, 78(7), 947–956. https://doi.org/10.1136/annrheumdis-2018-214856
Li, R., Meng, X., Chen, B., Zhao, L., & Zhang, X. (2021). Gut microbiota in lupus: A butterfly effect? Current Rheumatology Reports, 23(4), Article 27. https://doi.org/10.1007/s11926-021-00986-z
FitzGerald, O., Ogdie, A., Chandran, V., Coates, L. C., Kavanaugh, A., Tillett, W., Leung, Y. Y., de Wit, M., Scher, J. U., & Mease, P. J. (2021). Psoriatic arthritis. Nature Reviews Disease Primers, 7(1), Article 59. https://doi.org/10.1038/s41572-021-00293-y
Scotti, L., Franchi, M., Marchesoni, A., & Corrao, G. (2018). Prevalence and incidence of psoriatic arthritis: A systematic review and meta-analysis. Seminars in Arthritis and Rheumatism, 48(1), 28–34. https://doi.org/10.1016/j.semarthrit.2018.01.003
Coates, L. C., Soriano, E. R., Corp, N., Bertheussen, H., Callis Duffin, K., Campanholo, C. B., Chau, J., Eder, L., Fernández-Ávila, D. G., FitzGerald, O., Garg, A., Gladman, D. D., Goel, N., Helliwell, P. S., Husni, M. E., Jadon, D. R., Katz, A., Laheru, D., Latella, J., Leung, Y. Y., Lindsay, C., Lubrano, E., Mazzuoccolo, L. D., Mease, P. J., O’Sullivan, D., Ogdie, A., Olsder, W., Palominos, P. E., Schick, L., Steinkoenig, I., de Wit, M., van der Windt, D. A., & Kavanaugh, A. (2022). Group for Research and Assessment of Psoriasis and Psoriatic Arthritis (GRAPPA): Updated treatment recommendations for psoriatic arthritis 2021. Nature Reviews Rheumatology, 18(8), 465–479. https://doi.org/10.1038/s41584-022-00798-0
Gupta, S., Syrimi, Z., Hughes, D. M., & Zhao, S. S. (2021). Comorbidities in psoriatic arthritis: A systematic review and meta-analysis. Rheumatology International, 41(2), 275–284. https://doi.org/10.1007/s00296-020-04775-2
Ikeda, T., Nishida, A., Yamano, M., & Kimura, I. (2022). Short-chain fatty acid receptors and gut microbiota as therapeutic targets in metabolic, immune, and neurological diseases. Pharmacology & Therapeutics, 239, Article 108273. https://doi.org/10.1016/j.pharmthera.2022.108273
Lucas, S., Omata, Y., Hofmann, J., Böttcher, M., Iljazovic, A., Sarter, K., Albrecht, O., Schulz, O., Krishnacoumar, B., Krönke, G., Herrmann, M., Mougiakakos, D., Strowig, T., Schett, G., & Zaiss, M. M. (2018). Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nature Communications, 9(1), Article 55. https://doi.org/10.1038/s41467-017-02490-4
Paine, A., Brookes, P. S., Bhattacharya, S., Li, D., De La Luz Garcia-Hernandez, M., Tausk, F., & Ritchlin, C. (2023). Dysregulation of bile acids, lipids, and nucleotides in psoriatic arthritis revealed by unbiased profiling of serum metabolites. Arthritis & Rheumatology, 75(1), 53–63. https://doi.org/10.1002/art.42288
Cholan, P. M., Han, A., Woodie, B. R., Watchon, M., Kurz, A. R., Laird, A. S., Britton, W. J., Ye, L., Holmes, Z. C., McCann, J. R., David, L. A., Rawls, J. F., & Oehlers, S. H. (2020). Conserved anti-inflammatory effects and sensing of butyrate in zebrafish. Gut Microbes, 12(1), 1–11. https://doi.org/10.1080/19490976.2020.1824563
Chaudhary, P. P., Conway, P. L., & Schlundt, J. (2018). Methanogens in humans: Potentially beneficial or harmful for health. Applied Microbiology and Biotechnology, 102(7), 3095–3104. https://doi.org/10.1007/s00253-018-8871-2
Scanlan, P. D., Shanahan, F., & Marchesi, J. R. (2008). Human methanogen diversity and incidence in healthy and diseased colonic groups using mcrA gene analysis. BMC Microbiology, 8, Article 79. https://doi.org/10.1186/1471-2180-8-79
Pimentel, M., Mayer, A. G., Park, S., Chow, E. J., Hasan, A., & Kong, Y. (2003). Methane production during lactulose breath test is associated with gastrointestinal disease presentation. Digestive Diseases and Sciences, 48(1), 86–92. https://doi.org/10.1023/A:1021738515885
Wang, H., Wang, G., Banerjee, N., Liang, Y., Du, X., Boor, P. J., Hoffman, K. L., & Khan, M. F. (2021). Aberrant gut microbiome contributes to intestinal oxidative stress, barrier dysfunction, inflammation and systemic autoimmune responses in MRL/lpr mice. Frontiers in Immunology, 12, Article 651191. https://doi.org/10.3389/fimmu.2021.651191
Lin, P., Bach, M., Asquith, M., Lee, A. Y., Akileswaran, L., Stauffer, P., Davin, S., Pan, Y., Cambronne, E. D., Dorris, M., Debelius, J. W., Lauber, C. L., Ackermann, G., Baeza, Y. V., Gill, T., Knight, R., Colbert, R. A., Taurog, J. D., Van Gelder, R. N., & Rosenbaum, J. T. (2014). HLA-B27 and human β2-microglobulin affect the gut microbiota of transgenic rats. PLOS ONE, 9(8), Article e105684. https://doi.org/10.1371/journal.pone.0105684
World Health Organization, & Food and Agriculture Organization of the United Nations. (2001). Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria: Joint FAO/WHO expert consultation (pp. 1–34). https://doi.org/10.1201/9781420009613.ch16
Fan, Z., Yang, B., Ross, R. P., Stanton, C., Zhao, J., Zhang, H., & Chen, W. (2020). The prophylactic effects of different Lactobacilli on collagen-induced arthritis in rats. Food & Function, 11(4), 3681–3694. https://doi.org/10.1039/c9fo02556a
Vaghef-Mehrabany, E., Alipour, B., Homayouni-Rad, A., Sharif, S. K., Asghari-Jafarabadi, M., & Zavvari, S. (2014). Probiotic supplementation improves inflammatory status in patients with rheumatoid arthritis. Nutrition, 30(4), 430–435. https://doi.org/10.1016/j.nut.2013.09.007
Pineda, M. D. L., Thompson, S. F., Summers, K., de Leon, F., Pope, J., & Reid, G. (2011). A randomized, double-blinded, placebo-controlled pilot study of probiotics in active rheumatoid arthritis. Medical Science Monitor, 17(6), CR347–CR354. https://doi.org/10.12659/msm.881808
Fan, Z., Yang, B., Ross, R. P., Stanton, C., Shi, G., Zhao, J., Zhang, H., & Chen, W. (2020). Protective effects of Bifidobacterium adolescentis on collagen-induced arthritis in rats depend on timing of administration. Food & Function, 11(5), 4499–4511. https://doi.org/10.1039/d0fo00077a
Jeong, Y., Jhun, J., Lee, S. Y., Na, H. S., Choi, J., Cho, K. H., Lee, S. Y., Lee, A. R., Park, S. J., You, H. J., Kim, J. W., Park, M. S., Kwon, B., Cho, M. L., Ji, G. E., & Park, S. H. (2021). Therapeutic potential of a novel Bifidobacterium identified through microbiome profiling of RA patients with different RF levels. Frontiers in Immunology, 12, Article 736196. https://doi.org/10.3389/fimmu.2021.736196
Ji, G. E., Jeong, Y., Fang, H., Kwon, B., Park, S. H., Cho, M. L., et al. (2020). Composition containing Bifidobacterium for alleviating, preventing or treating rheumatoid arthritis.
Balakrishnan, B., Luckey, D., Bodhke, R., Chen, J., Marietta, E., Jeraldo, P., Murray, J., & Taneja, V. (2021). Prevotella histicola protects from arthritis by expansion of Allobaculum and augmenting butyrate production in humanized mice. Frontiers in Immunology, 12, Article 609644. https://doi.org/10.3389/fimmu.2021.609644
Kang, Y., Cai, Y., Zhang, X., Kong, X., & Su, J. (2017). Altered gut microbiota in RA: Implications for treatment. Zeitschrift für Rheumatologie, 76(5), 451–457. https://doi.org/10.1007/s00393-016-0237-5
Abhari, K., Shekarforoush, S. S., Hosseinzadeh, S., Nazifi, S., Sajedianfard, J., & Eskandari, M. H. (2016). The effects of orally administered Bacillus coagulans and inulin on prevention and progression of rheumatoid arthritis in rats. Food & Nutrition Research, 60, Article 30876. https://doi.org/10.3402/fnr.v60.30876
Liptak, R., Gromova, B., Maronek, M., & Gardlik, R. (2019). Reverse phenotype transfer via fecal microbial transplantation in inflammatory bowel disease. Medical Hypotheses, 122, 41–44. https://doi.org/10.1016/j.mehy.2018.10.017
Al, K. F., Craven, L. J., Gibbons, S., Parvathy, S. N., Wing, A. C., Graf, C., Parham, K. A., Kerfoot, S. M., Wilcox, H., Burton, J. P., et al. (2022). Fecal microbiota transplantation is safe and tolerable in patients with multiple sclerosis: A pilot randomized controlled trial. Multiple Sclerosis Journal—Experimental, Translational and Clinical, 8, 20552173221086664. https://doi.org/10.1177/20552173221086662
Ianiro, G., Bibbò, S., Porcari, S., Settanni, C. R., Giambò, F., Curta, A. R., Quaranta, G., Scaldaferri, F., Masucci, L., Sanguinetti, M., et al. (2021). Fecal microbiota transplantation for recurrent C. difficile infection in patients with inflammatory bowel disease: Experience of a large-volume European FMT center. Gut Microbes, 13, Article 1994834. https://doi.org/10.1080/19490976.2021.1994834
Liptak, R., Gromova, B., & Gardlik, R. (2021). Fecal microbiota transplantation as a tool for therapeutic modulation of non-gastrointestinal disorders. Frontiers in Medicine, 8, Article 665520. https://doi.org/10.3389/fmed.2021.665520
Paray, B. A., Albeshr, M. F., Jan, A. T., & Rather, I. A. (2020). Leaky gut and autoimmunity: An intricate balance in individuals health and the diseased state. International Journal of Molecular Sciences, 21, Article 9770. https://doi.org/10.3390/ijms21249770
Tong, Y., Zheng, L., Qing, P., Zhao, H., Li, Y., Su, L., Zhang, Q., Zhao, Y., Luo, Y., & Liu, Y. (2020). Oral microbiota perturbations are linked to high risk for rheumatoid arthritis. Frontiers in Cellular and Infection Microbiology, 9, Article 475. https://doi.org/10.3389/fcimb.2019.00475
Zeng, J., Peng, L., Zheng, W., Huang, F., Zhang, N., Wu, D., & Yang, Y. (2021). Fecal microbiota transplantation for rheumatoid arthritis: A case report. Clinical Case Reports, 9, 906–909. https://doi.org/10.1002/ccr3.3677
Edwards, V., Smith, D. L., Meylan, F., Tiffany, L., Poncet, S., Wu, W. W., Phue, J.-N., Santana-Quintero, L., Clouse, K. A., & Gabay, O. (2022). Analyzing the role of gut microbiota on the onset of autoimmune diseases using TNFΔARE murine model. Microorganisms, 10, Article 73. https://doi.org/10.3390/microorganisms10010073
Pu, Y., Zhang, Q., Tang, Z., Lu, C., Wu, L., Zhong, Y., Chen, Y., Hashimoto, K., Luo, Y., & Liu, Y. (2022). Fecal microbiota transplantation from patients with rheumatoid arthritis causes depression-like behaviors in mice through abnormal T cells activation. Translational Psychiatry, 12, Article 223. https://doi.org/10.1038/s41398-022-01993-z
Zhang, Z., Wan, H., Han, J., Sun, X., Yu, R., Liu, B., Lu, C., Zhou, J., & Su, X. (2022). Ameliorative effect of tuna elastin peptides on AIA mice by regulating the composition of intestinal microorganisms and SCFAs. Journal of Functional Foods, 92, Article 105076. https://doi.org/10.1016/j.jff.2022.105076
Hamamoto, Y., Ouhara, K., Munenaga, S., Shoji, M., Ozawa, T., Hisatsune, J., Kado, I., Kajiya, M., Matsuda, S., Kawai, T., et al. (2020). Effect of Porphyromonas gingivalis infection on gut dysbiosis and resultant arthritis exacerbation in mouse model. Arthritis Research & Therapy, 22, Article 249. https://doi.org/10.1186/s13075-020-02348-z
Schmidt, C. J., Wenndorf, K., Ebbers, M., Volzke, J., Müller, M., Strübing, J., Kriebel, K., Kneitz, S., Kreikemeyer, B., & Müller-Hilke, B. (2020). Infection with Clostridioides difficile attenuated collagen-induced arthritis in mice and involved mesenteric Treg and Th2 polarization. Frontiers in Immunology, 11, Article 571049. https://doi.org/10.3389/fimmu.2020.571049
Hao, X., Shang, X., Liu, J., Chi, R., Zhang, J., & Xu, T. (2021). The gut microbiota in osteoarthritis: Where do we stand and what can we do? Arthritis Research & Therapy, 23, Article 42. https://doi.org/10.1186/s13075-021-02427-9
Kragsnaes, M. S., Sødergren, S. T., Kjeldsen, J., Horn, H. C., Munk, H. L., Pedersen, J. K., Klinkby, C. S., de Wit, M., Ahlmark, N. G., Tjørnhøj-Thomsen, T., et al. (2021). Experiences and perceptions of patients with psoriatic arthritis participating in a trial of faecal microbiota transplantation: A nested qualitative study. BMJ Open, 11, e039471. https://doi.org/10.1136/bmjopen-2020-039471
Kragsnaes, M. S., Sødergren, S. T., Kjeldsen, J., Horn, H. C., Munk, H. L., Pedersen, J. K., Klinkby, C. S., de Wit, M., Ahlmark, N. G., Tjørnhøj-Thomsen, T., et al. (2021). Experiences and perceptions of patients with psoriatic arthritis participating in a trial of faecal microbiota transplantation: A nested qualitative study. BMJ Open, 11, e039471. https://doi.org/10.1136/bmjopen-2020-039471
Copyright (c) 2025 Michał Ględa, Aleksandra Grygorowicz, Klaudia Baran, Michał Szyszka, Weronika Radecka, Weronika Kozak, Agnieszka Szreiber, Karol Grela, Karolina Nowacka, Kamil Jabłoński, Anna Woźniak

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

