CROHN’S DISEASE: CURRENT INSIGHTS INTO PATHOGENESIS, DIAGNOSIS AND TREATMENT
Abstract
Background: Crohn’s disease (CD) is a chronic, relapsing inflammatory bowel disease with rising global incidence and substantial long-term morbidity. Its heterogeneous clinical course reflects a complex interplay between genetic susceptibility, environmental factors, intestinal dysbiosis, epithelial barrier dysfunction, and dysregulated immune responses. Advances in diagnostics and therapeutics have transformed CD management, yet disease progression and complications remain common.
Methods: This narrative review synthesizes current evidence on the pathophysiology, clinical presentation, diagnostic strategies, and treatment of Crohn’s disease. Peer-reviewed literature was examined focusing on genetic and immunological mechanisms, microbiome alterations, diagnostic modalities, conventional and advanced therapies, nutritional and surgical management, and emerging experimental approaches.
Results: Crohn’s disease pathogenesis involves polygenic risk factors (e.g., NOD2, ATG16L1, IL23R), impaired autophagy, dysbiosis, and aberrant innate and adaptive immune activation. Diagnosis requires an integrated approach combining biomarkers, endoscopy with histology, and cross-sectional imaging. Therapeutic strategies have shifted toward a treat-to-target model, emphasizing mucosal healing through biologics, small-molecule agents, immunomodulators, and selected nutritional interventions. Novel microbiome and cell-based therapies show promise but remain investigational.
Conclusion: Despite major therapeutic advances, Crohn’s disease continues to impose significant disease burden. Early diagnosis, proactive treatment, and personalized, mechanism-based strategies are essential to prevent cumulative bowel damage. Ongoing research into precision medicine and microbiome-targeted therapies may further improve long-term outcomes.
References
Cockburn E. al. (2023). Crohn’s disease: An update. Clinical Medicine, 23(6), 549–557. https://www.sciencedirect.com/science/article/pii/S1470211824000253
Cushing K. & Higgins P. D. R. (2021). Management of Crohn disease: A review. JAMA, 325(1), 69–80. https://pmc.ncbi.nlm.nih.gov/articles/PMC9183209/
Anaya P. & Pérez C. (2023). An updated review of Crohn’s disease. International Journal of Medical Sciences and Clinical Research, 3 (8):1592-94. https://ijmscr.ijpbms.com/index.php/ijmscrs/article/view/987
Mukim M. et al. (2022). Crohn’s disease: A review on epidemiology, diagnosis and therapeutic management. Indian Drugs, 59(9), 16–28. https://www.indiandrugsonline.org/issuesarticle-details?id=MTM0Nw==
Janssen L. M. et al. (2023). A systematic review on long-term efficacy outcome measures in Crohn’s disease patients. Journal of Crohn’s and Colitis, 17(9), 1528–1536. https://doi.org/10.1093/ecco-jcc/jjad037
Jostins L. et al. (2012). Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature, 491(7422), 119–124. https://www.nature.com/articles/nature11582
Liu, J. Z., et al. (2015). Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nature Genetics, 47(9), 979–986. https://www.nature.com/articles/ng.3359
Ogura Y. et al. (2001). A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. The New England Journal of Medicine, 345(15), 1085–1090. https://pubmed.ncbi.nlm.nih.gov/11385577/
Cadwell K. et al. (2008). A key role for autophagy and the autophagy gene ATG16L1 in mouse and human intestinal Paneth cells. Nature, 456(7219), 259–263. https://pubmed.ncbi.nlm.nih.gov/18849966/
Duerr R. H. et al. (2006). A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science, 314(5804), 1461–1463. https://www.science.org/doi/10.1126/science.1135245
Xie H. et al. (2025). Gut microbiota dysbiosis in inflammatory bowel disease: Interaction with intestinal barriers and microbiota-targeted treatment options. Frontiers in Cellular and Infection Microbiology, 15, Article 1608025. https://www.frontiersin.org/articles/10.3389/fcimb.2025.1608025
Frank D. N. et al. (2007). Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proceedings of the National Academy of Sciences of the United States of America, 104(34), 13780–13785. https://www.pnas.org/doi/10.1073/pnas.0706625104
Darfeuille-Michaud A. et al. (2004). High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology, 127(2), 412–421. https://www.gastrojournal.org/article/S0016-5085(04)00771-1/fulltext
Canani R. B. et al. (2011). Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. Journal of Pediatric Gastroenterology and Nutrition, 53(Suppl 2).
Beutler B. (2000). Tlr4: Central component of the sole mammalian LPS sensor. Current Opinion in Immunology, 12(1), 20–26. https://doi.org/10.1016/S0952-7915(99)00046-1
Alexander C. & Rietschel E. T. (2001). Bacterial lipopolysaccharides and innate immunity. Journal of Endotoxin Research, 7(3), 167–202. https://journals.sagepub.com/doi/10.1177/09680519010070030101
Katsanos K. A. & Papadakis K. A. (2016). Inflammatory bowel disease: Updates on molecular targets for biologics. Gut and Liver, 11(5), 597–612. https://www.gutnliver.org/journal/view.html?doi=10.5009/gnl16308
Sartor R. B. (2008). Microbial influences in inflammatory bowel diseases. Gastroenterology, 134(2), 577–594. https://www.gastrojournal.org/article/S0016-5085%2807%2902157-9/fulltext
Levine B. et al. (2011). Autophagy in immunity and inflammation. Nature, 469(7330), 323–335. https://www.nature.com/articles/nature09782
Zhong-Xing M. et al. (2025). Autophagy in inflammatory bowel disease: Immunization, etiology, and therapeutic potential. Frontiers in Immunology, 16, Article 1543040. https://www.frontiersin.org/articles/10.3389/fimmu.2025.1543040/full
Kuballa P. et al. (2008). Impaired autophagy of an intracellular pathogen induced by a Crohn’s disease–associated ATG16L1 variant. PLoS ONE, 3(10), e3391. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0003391
Luissint A.-C. et al. (2016). Inflammation and the intestinal barrier: Leukocyte–epithelial cell interactions, cell junction remodeling, and mucosal repair. Gastroenterology, 151(4), 616–632. https://www.gastrojournal.org/article/S0016-5085(16)34785-0/fulltext
Tokiyoshi A. et al. (2004). The role of Paneth cells and their antimicrobial peptides in innate host defense. Trends in Microbiology, 12(9), 394–398. https://www.cell.com/trends/microbiology/abstract/S0966-842X(04)00139-8
Michielan A. & D’Incà R. (2015). Intestinal permeability in inflammatory bowel disease: Pathogenesis, clinical evaluation, and therapy of leaky gut. Mediators of Inflammation, 2015, Article 628157. https://pmc.ncbi.nlm.nih.gov/articles/PMC4637104/
Wehkamp, J. et al. (2005). Reduced Paneth cell α-defensins in ileal Crohn’s disease. Proceedings of the National Academy of Sciences of the United States of America, 102(50), 18129–18134. https://www.pnas.org/doi/10.1073/pnas.0505256102
Manski A. et al. (2023). Diet and nutrition in inflammatory bowel disease: A review of the literature. Nutrients, 15(19), Article 4176. https://pmc.ncbi.nlm.nih.gov/articles/PMC10782214/
Adolph T. E. et al. (2022). Food fuelling inflammatory bowel diseases: Preclinical and clinical evidence. Gut, 71(12), 2574–2586. https://gut.bmj.com/content/71/12/2574
Karczewski, J. et al. (2014). The effect of cigarette smoking on the clinical course of inflammatory bowel disease. Przegląd Gastroenterologiczny, 9(3), 153–158. https://pmc.ncbi.nlm.nih.gov/articles/PMC4110362/
Andes M-Ch. et al. (2021). Early-life exposure to antibiotics and risk of Crohn’s disease: A nationwide cohort study. Alimentary Pharmacology & Therapeutics, 53(8), 939–948. https://pmc.ncbi.nlm.nih.gov/articles/PMC8889299/
Hracs L. et al. (2025). Global evolution of inflammatory bowel disease across countries and its relation to urbanisation and Westernisation. Nature, 629, 123–132. https://www.nature.com/articles/s41586-025-08940-0
Łodyga M. et al. (2021). Guidelines for the management of patients with Crohn’s disease: Recommendations of the Polish Society of Gastroenterology and the Polish National Consultant in Gastroenterology. Przegląd Gastroenterologiczny, 16(4), 257–296. https://www.termedia.pl/Guidelines-for-the-management-of-patients-with-Crohn-s-disease-Recommendations-of-the-Polish-Society-of-Gastroenterology-and-the-Polish-National-Consultant-in-Gastroenterology,41,45649,1,1.html
Teixeira da Silva Júnior, R. et al. (2023). Crohn’s disease and clinical management today: How it does? World Journal of Methodology, 13(4), 236–251. https://pmc.ncbi.nlm.nih.gov/articles/PMC10789097/
Peppercorn M. A. & Kane S. V. (2020). Clinical manifestations, diagnosis, and prognosis of Crohn disease in adults. In UpToDate. Wolters Kluwer. https://www.uptodate.com/contents/clinical-manifestations-diagnosis-and-prognosis-of-crohn-disease-in-adults
AMBOSS. (2024). Crohn disease. AMBOSS Medical Knowledge Platform.
Satsangi J. et al. (2006). The Montreal classification of inflammatory bowel disease: Controversies, consensus, and implications. Gut, 55(6), 749–753. https://pmc.ncbi.nlm.nih.gov/articles/PMC1856208/
Baumgart D. C., & Sandborn W. J. (2012). Crohn’s disease. The Lancet, 380(9853), 1590–1605. https://www.thelancet.com/article/S0140-6736(12)60026-9/fulltext
Yang H. et al. (2024). Diagnostic procedures for inflammatory bowel disease: Laboratory, endoscopy, pathology, imaging, and beyond. Diagnostics, 14(5), Article 1047. https://pmc.ncbi.nlm.nih.gov/articles/PMC11241288/
Panés J. et al. (2016). Advances in the use of endoscopy, radiology, and biomarkers to monitor inflammatory bowel diseases. Gastroenterology, 150(2), 415–429. https://www.gastrojournal.org/article/S0016-5085(16)35227-1/fulltext
Pouillon L. et al. (2023). Biomarkers in inflammatory bowel disease: A practical guide. Therapeutic Advances in Gastroenterology, 16, 1–20. https://pmc.ncbi.nlm.nih.gov/articles/PMC11085009/
Van Assche G. et al. (2010). The second European evidence-based consensus on the diagnosis and management of Crohn’s disease: Definitions and diagnosis. Journal of Crohn’s and Colitis, 4(1), 7–27. https://www.getaid.org/wp-content/uploads/2013/07/https__www.ecco-ibd.eu_images_6_Publication_6_3_ECCO-Guidelines_2010_CD_guidelines_definitions_diagnosis.pdf
Saade M. C. et al. (2022). Significance of granulomas in the outcomes of Crohn’s disease patients. Journal of Clinical Medicine, 11(18), Article 5408. https://pmc.ncbi.nlm.nih.gov/articles/PMC9399581/
Marini M. et al. (2003). TNF-α neutralization ameliorates the severity of murine Crohn’s-like ileitis by abrogation of intestinal epithelial cell apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8366–8371. https://www.pnas.org/doi/10.1073/pnas.1432897100
Ohtsuka K. et al. (2016). Magnetic resonance enterography for the evaluation of the deep small intestine in Crohn’s disease. Intestinal Research, 14(2), 148–155. https://www.researchgate.net/publication/302876384_Magnetic_resonance_enterography_for_the_evaluation_of_the_deep_small_intestine_in_Crohn's_disease
Frias-Gomes C. et al. (2021). Intestinal ultrasound in inflammatory bowel disease: A valuable and increasingly important tool. GE Portuguese Journal of Gastroenterology, 28(2), 104–113. https://pmc.ncbi.nlm.nih.gov/articles/PMC9275009/
Kemp K. et al. (2024). Crohn’s disease management: Translating STRIDE-II for UK clinical practice. Therapeutic Advances in Gastroenterology, 17, 1–15.
Benchimol E. I. et al. (2008). Traditional corticosteroids for induction of remission in Crohn’s disease. Cochrane Database of Systematic Reviews, 2008(2), CD006792. https://pmc.ncbi.nlm.nih.gov/articles/PMC6718222/
Prefontaine E. et al. (2009). Azathioprine or 6-mercaptopurine for maintenance of remission in Crohn’s disease. Cochrane Database of Systematic Reviews, 2009(1), CD000067. https://pubmed.ncbi.nlm.nih.gov/19160175/
Zaidi S. F. et al. (2025). A comprehensive review of the role of biologics and small-molecule therapies in the long-term management of Crohn’s disease. Cureus, 17(1), e367814. https://assets.cureus.com/uploads/review_article/pdf/367814/20251022-197145-xhdh51.pdf
Telli P. et al. (2024). Treatment of Crohn’s disease: Induction of remission, maintenance, and management of remission period - A comprehensive review. Journal of Enterocolitis, 14(1), 1–18. https://jenterocolitis.org/storage/upload/pdfs/1745495943-en.pdf
Babczyńska M. et al. (2025). Comparative effectiveness of risankizumab versus other biologics in Crohn’s disease: Long-term and quality-of-life outcomes after inadequate response to prior therapy. Journal of Clinical Medicine, 14(4), Article 998.
Fansiwala K. et al. (2024). Small molecules, big results: How JAK inhibitors have transformed the treatment of patients with inflammatory bowel disease. Digestive Diseases and Sciences, 69(4), 1087–1098. https://link.springer.com/article/10.1007/s10620-024-08792-0
Brindicci V. F. et al. (2025). Enteral nutrition in pediatric Crohn’s disease: New perspectives. Nutrients, 17(19), Article 3124. https://www.mdpi.com/2072-6643/17/19/3124
Sigall Boneh R. et al. (2024). The Crohn’s disease exclusion diet: A comprehensive review of evidence, implementation strategies, practical guidance, and future directions. Nutrients, 16(2), Article 243. https://pubmed.ncbi.nlm.nih.gov/37978895/
Fliss-Isakov N. et al. (2023). Crohn’s disease exclusion diet for the treatment of Crohn’s disease: Real-world experience from a tertiary center. Nutrients, 15(7), Article 1684. https://pmc.ncbi.nlm.nih.gov/articles/PMC10455757/
Castillo A. et al. (2025). Effects of a low FODMAP diet on gut microbiota in inflammatory bowel disease: A systematic review. The American Journal of Gastroenterology, 120(Suppl 1), S2154. https://journals.lww.com/ajg/Fulltext/2025/10002/S2154_Effects_of_a_Low_FODMAP_Diet_on_Gut.2154.aspx
Toh J. W. et al. (2016). Indications and surgical options for small bowel, large bowel and perianal Crohn’s disease. World Journal of Gastroenterology, 22(40), 8892–8904. https://www.wjgnet.com/1007-9327/full/v22/i40/8892.htm
Wang X. et al. (2024). The emerging role of the gut microbiota and its application in inflammatory bowel disease. Biomedicine & Pharmacotherapy, 173, Article 116065. https://www.sciencedirect.com/science/article/pii/S0753332224011867
Zou B. et al. (2025). Fecal microbiota transplantation restores gut microbiota diversity in children with active Crohn’s disease: A prospective trial. Journal of Translational Medicine, 23, Article 112. https://link.springer.com/article/10.1186/s12967-024-05832-1
Reese G. E. et al. (2008). The effect of smoking after surgery for Crohn’s disease: A meta-analysis of observational studies. International Journal of Colorectal Disease, 23(12), 1213–1221. https://pubmed.ncbi.nlm.nih.gov/18762954/
Ma C. et al. (2017). Surgical rates for Crohn’s disease are decreasing: A population-based time trend analysis and validation study. The American Journal of Gastroenterology, 112(12), 1840–1848. https://pmc.ncbi.nlm.nih.gov/articles/PMC5729339/
Views:
27
Downloads:
4
Copyright (c) 2025 Weronika Radecka, Aleksandra Grygorowicz, Klaudia Baran, Michał Ględa, Michał Szyszka, Weronika Kozak, Agnieszka Szreiber, Karol Grela, Karolina Nowacka, Kamil Jabłoński, Anna Woźniak

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

