OBESITY AS AN IMMUNOMETABOLIC DISORDER: MECHANISMS OF IMMUNE IMPAIRMENT AND INCREASED SEVERITY OF INFECTIOUS DISEASES - A REVIEW OF CURRENT EVIDENCE
Abstract
Background: Obesity represents a major global health burden and is increasingly recognized as a complex immunometabolic disorder rather than a simple imbalance of energy intake and expenditure. Chronic low-grade inflammation, adipokine dysregulation, altered immune cell metabolism, and gut microbiota dysbiosis profoundly remodel immune responses in individuals with obesity. Growing evidence indicates that these alterations significantly affect susceptibility to infections, disease severity, and clinical outcomes, particularly in viral respiratory infections such as COVID-19 and influenza.
Aims: This narrative review aims to synthesize current epidemiological, mechanistic, and interventional evidence explaining why individuals with obesity experience more severe courses of infectious diseases. Particular attention is given to immunometabolic dysfunction, adipokine imbalance, inflammasome activation, microbiota-derived immune modulation, and the potential reversibility of immune impairment through metabolic interventions.
Methods: A comprehensive narrative literature review was conducted using PubMed, PubMed Central, Google Scholar, and ResearchGate. Eligible studies included randomized controlled trials, observational cohort and cross-sectional studies, mechanistic immunology research, microbiota studies, and systematic or narrative reviews focusing on adults with overweight or obesity. Evidence was synthesized qualitatively due to heterogeneity in study designs and outcomes.
Results: Across study types, obesity consistently emerged as an independent risk factor for immune dysfunction and severe infectious outcomes. Mechanistic studies demonstrated chronic activation of inflammatory pathways, including NLRP3 inflammasome signaling, leptin dominance with reduced adiponectin, impaired interferon responses, mitochondrial dysfunction, and exhaustion of T and NK cells. Microbiota studies revealed reduced diversity and depletion of short-chain fatty acid–producing bacteria. Clinical studies confirmed higher rates of hospitalization, intensive care admission, prolonged viral shedding, and mortality among individuals with obesity. Interventional studies showed that modest weight loss (5–10%) can partially restore immune function and reduce inflammatory burden.
Conclusion: Obesity profoundly impairs immune competence through interconnected metabolic, inflammatory, and microbiota-driven mechanisms, leading to increased susceptibility to infections and worse clinical outcomes. Although immunometabolic dysfunction is partially reversible, further long-term studies are required to determine its impact on clinical risk reduction.
References
Li, P., Qiao, Q., Nie, C. et al. The mediating role of chronic low-grade inflammation participation in the relationship between obesity and type 2 diabetes: findings from the NHANES. BMC Endocr Disord 24, 130 (2024). https://doi.org/10.1186/s12902-024-01671-9
Khanna, D., Khanna, S., Khanna, P., Kahar, P., & Patel, B. M. (2022). Obesity: A Chronic Low-Grade Inflammation and Its Markers. Cureus, 14(2), e22711. https://doi.org/10.7759/cureus.22711
O’Shea, D.; Hogan, A.E. Dysregulation of Natural Killer Cells in Obesity. Cancers 2019, 11, 573. https://doi.org/10.3390/cancers11040573
Fei, Q., Huang, J., He, Y., Zhang, Y., Zhang, X., Wang, J., & Fu, Q. (2025). Immunometabolic Interactions in Obesity: Implications for Therapeutic Strategies. Biomedicines, 13(6), 1429. https://doi.org/10.3390/biomedicines13061429
Romaní-Pérez, M., Líebana-García, R., Flor-Duro, A., Bonillo-Jiménez, D., Bullich-Vilarrubias, C., Olivares, M., & Sanz, Y. (2025). Obesity and the gut microbiota: implications of neuroendocrine and immune signaling. The FEBS journal, 292(6), 1397–1420. https://doi.org/10.1111/febs.17249
Liu, P., Wang, Y., Yang, G., Zhang, Q., Meng, L., Xin, Y., & Jiang, X. (2021). The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacological research, 165, 105420. https://doi.org/10.1016/j.phrs.2021.105420
Liu, S., Zhang, H. & Lan, Z. Associations of obesity with chronic inflammatory airway diseases and mortality in adults: a population-based investigation. BMC Public Health 24, 1300 (2024). https://doi.org/10.1186/s12889-024-18782-6
Maier, H. E., Lopez, R., Sanchez, N., Ng, S., Gresh, L., Ojeda, S., Burger-Calderon, R., Kuan, G., Harris, E., Balmaseda, A., & Gordon, A. (2018). Obesity Increases the Duration of Influenza A Virus Shedding in Adults. The Journal of infectious diseases, 218(9), 1378–1382. https://doi.org/10.1093/infdis/jiy370
Polak-Szczybyło, E., & Tabarkiewicz, J. (2025). The Influence of Body Composition, Lifestyle, and Dietary Components on Adiponectin and Resistin Levels and AR Index in Obese Individuals. International Journal of Molecular Sciences, 26(1), 393
Zimmermann, P., & Curtis, N. (2019). Factors That Influence the Immune Response to Vaccination. Clinical microbiology reviews, 32(2), e00084-18. https://doi.org/10.1128/CMR.00084-18
Kainth, M. K., Fishbein, J. S., Aydillo, T., Escalera, A., Odusanya, R., Grammatikopoulos, K., Scotto, T., Sethna, C. B., García-Sastre, A., & Deutschman, C. S. (2022). Obesity and Metabolic Dysregulation in Children Provide Protective Influenza Vaccine Responses. Viruses, 14(1), 124. https://doi.org/10.3390/v14010124
López-Reyes, A., Martinez-Armenta, C., Espinosa-Velázquez, R., Vázquez-Cárdenas, P., Cruz-Ramos, M., Palacios-Gonzalez, B., Gomez-Quiroz, L. E., & Martínez-Nava, G. A. (2020). NLRP3 Inflammasome: The Stormy Link Between Obesity and COVID-19. Frontiers in immunology, 11, 570251
Kirichenko, T. V., Markina, Y. V., Bogatyreva, A. I., Tolstik, T. V., Varaeva, Y. R., & Starodubova, A. V. (2022). The Role of Adipokines in Inflammatory Mechanisms of Obesity. International Journal of Molecular Sciences, 23(23), 14982. https://doi.org/10.3390/ijms232314982
Cai, Z., Yang, Y., & Zhang, J. (2021). Obesity is associated with severe disease and mortality in patients with coronavirus disease 2019 (COVID-19): a meta-analysis. BMC public health, 21(1), 1505. https://doi.org/10.1186/s12889-021-11546-6
Földi, M., Farkas, N., Kiss, S., Dembrovszky, F., Szakács, Z., Balaskó, M., Erőss, B., Hegyi, P., & Szentesi, A. (2021). Visceral Adiposity Elevates the Risk of Critical Condition in COVID-19: A Systematic Review and Meta-Analysis. Obesity (Silver Spring, Md.), 29(3), 521–528. https://doi.org/10.1002/oby.23096
Iqbal, M., Yu, Q., Tang, J., & Xiang, J. (2025). Unraveling the gut microbiota's role in obesity: key metabolites, microbial species, and therapeutic insights. Journal of bacteriology, 207(5), e0047924. https://doi.org/10.1128/jb.00479-24
Ejtahed, H. S., Angoorani, P., Soroush, A. R., Hasani-Ranjbar, S., Siadat, S. D., & Larijani, B. (2020). Gut microbiota-derived metabolites in obesity: a systematic review. Bioscience of microbiota, food and health, 39(3), 65–76. https://doi.org/10.12938/bmfh.2019-026
Jang, S., Hong, W., & Moon, Y. (2024). Obesity-compromised immunity in post-COVID-19 condition: a critical control point of chronicity. Frontiers in immunology, 15, 1433531. https://doi.org/10.3389/fimmu.2024.1433531
Wilkin, C., Esser, N., Lassence, C., Bruneteaux, M., Fadeur, M., De Flines, J., Paquot, N., Piette, J., & Legrand-Poels, S. (2025). Peripheral blood iNKT cells display an activated profile with both increased apoptosis and dysfunction in obesity. Frontiers in Immunology, 16, 1651054. https://doi.org/10.3389/fimmu.2025.1651054
Taylor E. B. (2021). The complex role of adipokines in obesity, inflammation, and autoimmunity. Clinical science (London, England: 1979), 135(6), 731–752. https://doi.org/10.1042/CS20200895
Abd El-Kader, M. S., Al-Jiffri, O., & Ashmawy, E. M. (2013). Impact of weight loss on markers of systemic inflammation in obese Saudi children with asthma. African health sciences, 13(3), 682–688. https://doi.org/10.4314/ahs.v13i3.23
Fei, Q., Huang, J., He, Y., Zhang, Y., Zhang, X., Wang, J., & Fu, Q. (2025). Immunometabolic Interactions in Obesity: Implications for Therapeutic Strategies. Biomedicines, 13(6), 1429. https://doi.org/10.3390/biomedicines13061429
Zhang, X., Lewis, A.M., Moley, J.R. et al. A systematic review and meta-analysis of obesity and COVID-19 outcomes. Sci Rep 11, 7193 (2021). https://doi.org/10.1038/s41598-021-86694-1
Russo, A., Pisaturo, M., Zollo, V., Martini, S., Maggi, P., Numis, F. G., Gentile, I., Sangiovanni, N., Rossomando, A. M., Bianco, V., Calabria, G., Pisapia, R., Codella, A. V., Masullo, A., Manzillo, E., Russo, G., Parrella, R., Dell’Aquila, G., Gambardella, M.,... Coppola, N., on behalf of CoviCam Group. (2023). Obesity as a Risk Factor of Severe Outcome of COVID-19: A Pair-Matched 1:2 Case–Control Study. Journal of Clinical Medicine, 12(12), 4055. https://doi.org/10.3390/jcm12124055
Al-Sharif, F. M., Abd El-Kader, S. M., Neamatallah, Z. A., & AlKhateeb, A. M. (2020). Weight reduction improves immune system and inflammatory cytokines in obese asthmatic patients. African health sciences, 20(2), 897–902. https://doi.org/10.4314/ahs.v20i2.44
Jiang, Z., Tabuchi, C., Gayer, S. G., & Bapat, S. P. (2025). Immune Dysregulation in Obesity. Annual review of pathology, 20(1), 483–509. https://doi.org/10.1146/annurev-pathmechdis-051222-015350
Khan, S., Luck, H., Winer, S., & Winer, D. A. (2021). Emerging concepts in intestinal immune control of obesity-related metabolic disease. Nature communications, 12(1), 2598. https://doi.org/10.1038/s41467-021-22727-7
Kim C. H. (2021). Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids. Cellular & molecular immunology, 18(5), 1161–1171. https://doi.org/10.1038/s41423-020-00625-0
Pérez-Galarza, J., Prócel, C., Cañadas, C., Aguirre, D., Pibaque, R., Bedón, R., Sempértegui, F., Drexhage, H., & Baldeón, L. (2021). Immune Response to SARS-CoV-2 Infection in Obesity and T2D: Literature Review. Vaccines, 9(2), 102. https://doi.org/10.3390/vaccines9020102
Hotamisligil, G. S., Arner, P., Caro, J. F., Atkinson, R. L., & Spiegelman, B. M. (1995). Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. The Journal of clinical investigation, 95(5), 2409–2415. https://doi.org/10.1172/JCI117936
Shoelson, S. E., Lee, J., & Goldfine, A. B. (2006). Inflammation and insulin resistance. The Journal of clinical investigation, 116(7), 1793–1801. https://doi.org/10.1172/JCI29069
Makhoul, Z., Kristal, A. R., Gulati, R., Luick, B., Bersamin, A., O'Brien, D., Hopkins, S. E., Stephensen, C. B., Stanhope, K. L., Havel, P. J., & Boyer, B. (2011). Associations of obesity with triglycerides and C-reactive protein are attenuated in adults with high red blood cell eicosapentaenoic and docosahexaenoic acids. European journal of clinical nutrition, 65(7), 808–817. https://doi.org/10.1038/ejcn.2011.39
Vasheghani, M., Hessami, Z., Rekabi, M., Abedini, A., & Qanavati, A. (2022). Evaluating Possible Mechanisms Linking Obesity to COVID-19: a Narrative Review. Obesity surgery, 32(5), 1689–1700. https://doi.org/10.1007/s11695-022-05933-0
Hotamisligil G. S. (2006). Inflammation and metabolic disorders. Nature, 444(7121), 860–867. https://doi.org/10.1038/nature05485
Wellen, K. E., & Hotamisligil, G. S. (2003). Obesity-induced inflammatory changes in adipose tissue. The Journal of clinical investigation, 112(12), 1785–1788. https://doi.org/10.1172/JCI20514
Ouchi, N., Parker, J. L., Lugus, J. J., & Walsh, K. (2011). Adipokines in inflammation and metabolic disease. Nature reviews. Immunology, 11(2), 85–97. https://doi.org/10.1038/nri2921
La Cava, A., & Matarese, G. (2004). The weight of leptin in immunity. Nature reviews. Immunology, 4(5), 371–379. https://doi.org/10.1038/nri1350
Gregor, M. F., & Hotamisligil, G. S. (2011). Inflammatory mechanisms in obesity. Annual review of immunology, 29, 415–445. https://doi.org/10.1146/annurev-immunol-031210-101322
Belkaid, Y., & Hand, T. W. (2014). Role of the microbiota in immunity and inflammation. Cell, 157(1), 121–141. https://doi.org/10.1016/j.cell.2014.03.011
Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A. M., Fava, F., Tuohy, K. M., Chabo, C., Waget, A., Delmée, E., Cousin, B., Sulpice, T., Chamontin, B., Ferrières, J., Tanti, J. F., Gibson, G. R., Casteilla, L., Delzenne, N. M., … Burcelin, R. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7), 1761–1772. https://doi.org/10.2337/db06-1491
Smith, P. M., Howitt, M. R., Panikov, N., Michaud, M., Gallini, C. A., Bohlooly-Y, M., Glickman, J. N., & Garrett, W. S. (2013). The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science (New York, N.Y.), 341(6145), 569–573. https://doi.org/10.1126/science.1241165
Koh, A., De Vadder, F., Kovatcheva-Datchary, P., & Bäckhed, F. (2016). From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell, 165(6), 1332–1345. https://doi.org/10.1016/j.cell.2016.05.041
Popkin, B. M., Du, S., Green, W. D., Beck, M. A., Algaith, T., Herbst, C. H., Alsukait, R. F., Alluhidan, M., Alazemi, N., & Shekar, M. (2020). Individuals with obesity and COVID-19: A global perspective on the epidemiology and biological relationships. Obesity reviews: an official journal of the International Association for the Study of Obesity, 21(11), e13128. https://doi.org/10.1111/obr.13128
Stefan, N., Birkenfeld, A. L., Schulze, M. B., & Ludwig, D. S. (2020). Obesity and impaired metabolic health in patients with COVID-19. Nature reviews. Endocrinology, 16(7), 341–342. https://doi.org/10.1038/s41574-020-0364-6
Andersen, C. J., Murphy, K. E., & Fernandez, M. L. (2016). Impact of Obesity and Metabolic Syndrome on Immunity. Advances in nutrition (Bethesda, Md.), 7(1), 66–75. https://doi.org/10.3945/an.115.010207
Karlsson, E. A., & Beck, M. A. (2010). The burden of obesity on infectious disease. Experimental biology and medicine (Maywood, N.J.), 235(12), 1412–1424. https://doi.org/10.1258/ebm.2010.010227
Copyright (c) 2026 Wiktoria Błaszczyk, Anastasiia Holoborodko, Ewa Wieczorkiewicz, Eliza Garbacz, Agnieszka Pocheć, Bartosz Lautenbach, Dariusz Nędza, Klaudia Wojciech, Anhelina Loputs, Patrycja Stępińska

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

