THE SIGNIFICANCE OF SLEEP IN GLUCOSE METABOLISM REGULATION – THE ROLE OF CIRCADIAN RHYTHM DISRUPTIONS IN TYPE 2 DIABETES DEVELOPMENT: A NARRATIVE REVIEW
Abstract
Background: Sleep and circadian rhythm disturbances constitute modifiable risk factors for type 2 diabetes mellitus (T2DM). Meta-analytic evidence demonstrates that short sleep duration (<6h/night) increases T2DM risk by 28–33% (OR 1.28–1.33), while shift work elevates incidence by 9–40% (RR 1.09–1.40).
Aims: The aim of this narrative review is to synthesise current epidemiological, interventional, and mechanistic evidence on how sleep disturbances and circadian rhythm disruptions influence type 2 diabetes pathophysiology in adults.
Methods: A structured narrative review was conducted using literature from PubMed, Scopus, Web of Science, and Google Scholar (2015–2025). Searches employed terms: "sleep duration glucose metabolism", "circadian rhythm type 2 diabetes", "clock genes insulin resistance", "shift work diabetes risk", "melatonin glucose homeostasis". Meta-analyses, systematic reviews, cohort studies, and randomized controlled trials were included.
Results: Epidemiological evidence reveals a U-shaped sleep–T2DM relationship with optimal risk at 7–8 hours/night. Short sleep (<6h) and long sleep (>9h) both increase T2DM risk (OR 1.28–1.48). Night shift work elevates risk dose-dependently (RR 1.40, 95% CI 1.15–1.71) across 1.16 million participants. Molecular mechanisms involve desynchronized clock genes (CLOCK, BMAL1, PER2, CRY1), mitochondrial dysfunction reducing oxidative capacity 20–30%, and altered melatonin signaling. Sleep extension interventions improve insulin sensitivity 17–45% within 1 week. Evening chronotherapy with glucose-lowering drugs demonstrates superior efficacy compared to morning dosing. CBT-I (cognitive behavioral therapy for insomnia) reduces T2DM incidence by 42% in prediabetic populations.
Conclusion: Sleep and circadian optimization represent cost-effective, modifiable strategies for T2DM prevention. Personalized chronotherapy guided by genetic profiling and objective sleep/activity monitoring warrants implementation in clinical practice and public health policies.
References
International Diabetes Federation. IDF Diabetes Atlas (11th ed.). Brussels: IDF; 2023. https://diabetesatlas.org/
Ravussin E, Galgani JE. The link between sleeping and type 2 diabetes. Cureus. 2023;15(11):e48191. https://doi.org/10.7759/cureus.48228
Cappuccio FP, Miller MA. Sleep duration and all-cause mortality: A systematic review and meta-analysis of prospective studies. Sleep. 2010;33(5):585-592. https://doi.org/10.1093/sleep/33.5.585
Javeed N, Matveyenko AV. Circadian Etiology of Type 2 Diabetes Mellitus. Physiology (Bethesda). 2018 Mar 1;33(2):138-150. https://doi.org/10.1152/physiol.00003.2018
Gabriel BM, Altıntaş A, Smith JAB, Sardon-Puig L, Zhang X, Basse AL, Laker RC, Gao H, Liu Z, Dollet L, Treebak JT, Zorzano A, Huo Z, Rydén M, Lanner JT, Esser KA, Barrès R, Pillon NJ, Krook A, Zierath JR. Disrupted circadian oscillations in type 2 diabetes are linked to altered rhythmic mitochondrial metabolism in skeletal muscle. Sci Adv. 2021 Oct 22;7(43):eabi9654. https://doi.org/10.1126/sciadv.abi9654
Cheng H, Zhong D, Tan Y. Advancements in research on the association between circadian rhythm and type 2 diabetes. Front Endocrinol. 2024;15:1320605. https://doi.org/10.3389/fendo.2024.1320605
Gao Y, Gan T, Jiang L, Yu L, Tang D, Wang Y, Li X, Ding G. Association between shift work and risk of type 2 diabetes mellitus: a systematic review and dose-response meta-analysis of observational studies. Chronobiol Int. 2020 Jan;37(1):29-46. https://doi.org/10.1080/07420528.2019.1683570
Shan Z, Ma H, Xie M, Yan P, Guo Y, Bao W, Rong Y, Jackson CL, Hu FB, Liu L. Sleep duration and risk of type 2 diabetes: a meta-analysis of prospective studies. Diabetes Care. 2015 Mar;38(3):529-37. https://doi.org/10.2337/dc14-2073
Kivimäki M, Batty GD, Hublin C. Shift work as a risk factor for future type 2 diabetes: evidence, mechanisms, implications, and future research directions. PLoS Med. 2011 Dec;8(12):e1001138. https://doi.org/10.1371/journal.pmed.1001138
Mesarwi O, Polak J, Jun J, Polotsky VY. Sleep disorders and the development of insulin resistance and obesity. Endocrinol Metab Clin North Am. 2013 Sep;42(3):617-34. https://doi.org/10.1016/j.ecl.2013.05.001
Maloney A, Kanaley JA. Short Sleep Duration Disrupts Glucose Metabolism: Can Exercise Turn Back the Clock? Exerc Sport Sci Rev. 2024 Jul 1;52(3):77-86. https://doi.org/10.1249/JES.0000000000000339
Kothari V, Cardona Z, Chirakalwasan N, Anothaisintawee T, Reutrakul S. Sleep interventions and glucose metabolism: systematic review and meta-analysis. Sleep Med. 2021 Feb;78:24-35. https://doi.org/10.1016/j.sleep.2020.11.035
Lauritzen ES, Kampmann U, Pedersen MGB, Christensen LL, Jessen N, Møller N, Støy J. Three months of melatonin treatment reduces insulin sensitivity in patients with type 2 diabetes-A randomized placebo-controlled crossover trial. J Pineal Res. 2022 Aug;73(1):e12809. https://doi.org/ 10.1111/jpi.12809
Owino S, Contreras-Alcantara S, Baba K, Tosini G. Melatonin Signaling Controls the Daily Rhythm in Blood Glucose Levels Independent of Peripheral Clocks. PLoS One. 2016 Jan 29;11(1):e0148214. https://doi.org/10.1371/journal.pone.0148214
Mason IC, Qian J, Adler GK, Scheer FAJL. Impact of circadian disruption on glucose metabolism: implications for type 2 diabetes. Diabetologia. 2020 Mar;63(3):462-472. https://doi.org/ 10.1007/s00125-019-05059-6
Rafalson L, Donahue RP, Stranges S, Lamonte MJ, Dmochowski J, Dorn J, Trevisan M. Short sleep duration is associated with the development of impaired fasting glucose: the Western New York Health Study. Ann Epidemiol. 2010 Dec;20(12):883-9. https://doi.org/10.1016/j.annepidem.2010.05.002
Knutson KL. Impact of sleep and sleep loss on glucose homeostasis and appetite regulation. Sleep Med Clin. 2007 Jun;2(2):187-197 https://doi.org/10.1016/j.jsmc.2007.03.004.
Scheer FA, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4453-8. https://doi.org/10.1073/pnas.0808180106
Kalsbeek A, la Fleur S, Fliers E. Circadian control of glucose metabolism. Mol Metab. 2014 Mar 19;3(4):372-83. https://doi.org/10.1016/j.molmet.2014.03.002
Polonsky KS, Given BD, Van Cauter E. Twenty-four-hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects. J Clin Invest. 1988 Feb;81(2):442-8. https://doi.org/10.1172/JCI113339
Irwin MR, Olmstead R, Carroll JE. Sleep Disturbance, Sleep Duration, and Inflammation: A Systematic Review and Meta-Analysis of Cohort Studies and Experimental Sleep Deprivation. Biol Psychiatry. 2016 Jul 1;80(1):40-52. https://doi.org/10.1016/j.biopsych.2015.05.014
Riemann D, Baglioni C, Bassetti C, Bjorvatn B, Dolenc Groselj L, Ellis JG, Espie CA, Garcia-Borreguero D, Gjerstad M, Gonçalves M, Hertenstein E, Jansson-Fröjmark M, Jennum PJ, Leger D, Nissen C, Parrino L, Paunio T, Pevernagie D, Verbraecken J, Weeß HG, Wichniak A, Zavalko I, Arnardottir ES, Deleanu OC, Strazisar B, Zoetmulder M, Spiegelhalder K. European guideline for the diagnosis and treatment of insomnia. J Sleep Res. 2017 Dec;26(6):675-700. https://doi.org/10.1111/jsr.12594
Knutsson A. Health disorders of shift workers. Occup Med (Lond). 2003 Mar;53(2):103-8. https://doi.org/10.1093/occmed/kqg048
Zhang Z, Wang S, Gao L. Circadian rhythm, glucose metabolism and diabetic complications: the role of glucokinase and the enlightenment on future treatment. Front Physiol. 2025 Feb 21;16:1537231. https://doi.org/10.3389/fphys.2025.1537231
Tasali, E., Leproult, R., Ehrmann, D.A., & van Cauter, E. (2008). Slow-wave sleep and the risk of type 2 diabetes in humans. Proceedings of the National Academy of Sciences, 105, 1044 - 1049. https://doi.org/10.1073/pnas.0706446105
Views:
38
Downloads:
0
Copyright (c) 2026 Klaudia Wojciech, Anastasiia Holoborodko, Ewa Wieczorkiewicz, Patrycja Stępińska, Eliza Garbacz, Agnieszka Pocheć, Bartosz Lautenbach, Dariusz Nędza, Anhelina Loputs, Wiktoria Błaszczyk

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

