THE TRANSFORMATION OF CARDIOVASCULAR SCREENING IN ATHLETES: THE MULTIMODAL ROLE OF ARTIFICIAL INTELLIGENCE IN DIFFERENTIATING CARDIAC PATHOLOGIES FROM PHYSIOLOGICAL ADAPTATION

Keywords: Cardiology, Athlete’s Heart, Artificial Intelligence, Sudden Cardiac Death, Cardiovascular Screening

Abstract

Purpose: The primary objective of this review is to evaluate the efficacy, clinical applications, and current limitations of Artificial Intelligence (AI) and Machine Learning (ML) in diagnosing cardiovascular diseases (CVD) among competitive athletes. Specifically, this study addresses the critical diagnostic challenge of differentiating benign physiological adaptations known as "athlete's heart" from potentially lethal pathologies, including cardiomyopathies and channelopathies, to prevent sudden cardiac death.

Materials and Methods: A systematic literature search was conducted across PubMed, Scopus, and Web of Science databases covering the period from 2000 to 2025. The review identified and synthesized 48 key studies utilizing AI algorithms—specifically deep learning applied to electrocardiography (AI-ECG) and automated imaging analysis (Echocardiography, CMR)—for the detection of Hypertrophic Cardiomyopathy (HCM), Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC), valvular anomalies, and inherited channelopathies. Diagnostic performance metrics were analyzed to compare AI methodologies against standard clinical criteria.

Results: Deep learning models applied to ECG demonstrate superior sensitivity (>90%) in detecting occult cardiomyopathies compared to traditional methods , while AI-enhanced imaging significantly improves the reproducibility of tissue characterization. AI algorithms, such as those analyzing phonocardiograms, show efficacy comparable to echocardiography in detecting valvular heart disease.

Conclusions: AI represents a paradigm shift in sports cardiology, offering potential for scalable and cost-effective screening. However, widespread clinical implementation is currently hindered by the "black box" nature of algorithms and the scarcity of large, athlete-specific training datasets. Future deployment requires explainable AI models validated on diverse athletic cohorts.

References

Aljehani, A., Kew, T., Baig, S., Cox, H., Sommerfeld, L. C., Ensam, B., Kalla, M., Steeds, R. P., & Fabritz, L. (2023). Characterisation of patients referred to a tertiary-level inherited cardiac condition clinic with suspected arrhythmogenic right ventricular cardiomyopathy (ARVC). BMC Cardiovascular Disorders, 23(1), 14. https://doi.org/10.1186/s12872-022-03021-w

Angelini, P. (2007). Coronary Artery Anomalies. Circulation, 115(10), 1296–1305. https://doi.org/10.1161/CIRCULATIONAHA.106.618082

Augustine, D. X., & Howard, L. (2018). Left Ventricular Hypertrophy in Athletes: Differentiating Physiology From Pathology. Current Treatment Options in Cardiovascular Medicine, 20(12), 96. https://doi.org/10.1007/s11936-018-0691-2

Baba Ali, N., Attaripour Esfahani, S., Scalia, I. G., Farina, J. M., Pereyra, M., Barry, T., Lester, S. J., Alsidawi, S., Steidley, D. E., Ayoub, C., Palermi, S., & Arsanjani, R. (2024). The Role of Cardiovascular Imaging in the Diagnosis of Athlete’s Heart: Navigating the Shades of Grey. Journal of Imaging, 10(9), 230. https://doi.org/10.3390/jimaging10090230

Basso, C., Maron, B. J., Corrado, D., & Thiene, G. (2000). Clinical profile of congenital coronary artery anomalies with origin from the wrong aortic sinus leading to sudden death in young competitive athletes. Journal of the American College of Cardiology, 35(6), 1493–1501. https://doi.org/10.1016/s0735-1097(00)00566-0

Bellfield, R. A. A., Ortega-Martorell, S., Lip, G. Y. H., Oxborough, D., & Olier, I. (2022). The Athlete’s Heart and Machine Learning: A Review of Current Implementations and Gaps for Future Research. Journal of Cardiovascular Development and Disease, 9(11), 382. https://doi.org/10.3390/jcdd9110382

Bhatia, R., Westaby, J., Behr, E., Papadakis, M., Sharma, S., Finocchiaro, G., & Sheppard, M. (2022). Sudden cardiac death during exercise in young individuals with hypertrophic cardiomyopathy. European Heart Journal, 43(Supplement_2), ehac544.1716. https://doi.org/10.1093/eurheartj/ehac544.1716

Bos, J. M., Attia, Z. I., Albert, D. E., Noseworthy, P. A., Friedman, P. A., & Ackerman, M. J. (2021). Use of Artificial Intelligence and Deep Neural Networks in Evaluation of Patients With Electrocardiographically Concealed Long QT Syndrome From the Surface 12-Lead Electrocardiogram. JAMA Cardiology, 6(5), 532–538. https://doi.org/10.1001/jamacardio.2020.7422

Bourfiss, M., Prakken, N. H. J., James, C. A., Planken, R. N., Boekholdt, S. M., Ahmetagic, D., van den Berg, M. P., Tichnell, C., Van der Heijden, J. F., Loh, P., Murray, B., Tandri, H., Kamel, I., Calkins, H., Asselbergs, F. W., Zimmerman, S. L., Velthuis, B. K., & Te Riele, A. S. J. M. (2022). Prognostic value of strain by feature-tracking cardiac magnetic resonance in arrhythmogenic right ventricular cardiomyopathy. European Heart Journal. Cardiovascular Imaging, 24(1), 98–107. https://doi.org/10.1093/ehjci/jeac030

Bourfiss, M., Sander, J., de Vos, B. D., te Riele, A. S. J. M., Asselbergs, F. W., Išgum, I., & Velthuis, B. K. (2023). Towards automatic classification of cardiovascular magnetic resonance Task Force Criteria for diagnosis of arrhythmogenic right ventricular cardiomyopathy. Clinical Research in Cardiology, 112(3), 363–378. https://doi.org/10.1007/s00392-022-02088-x

Campuzano, O., Alcalde, M., Iglesias, A., Barahona-Dussault, C., Sarquella-Brugada, G., Benito, B., Arzamendi, D., Flores, J., Leung, T. K., Talajic, M., Oliva, A., & Brugada, R. (2012). Arrhythmogenic right ventricular cardiomyopathy: Severe structural alterations are associated with inflammation. Journal of Clinical Pathology, 65(12), 1077–1083. https://doi.org/10.1136/jclinpath-2012-201022

Cavarretta, E., D’Ascenzi, F., Bianco, M., Castelletti, S., Cavigli, L., Cecchi, F., D’Andrea, A., De Luca, A., Di Salvo, G., Nistri, S., Palamà, Z., Palmieri, V., Ricci, F., Sinagra, G., Zorzi, A., Biffi, A., Pelliccia, A., Romano, S., Dello Russo, A., … Sciarra, L. (2024). The role of echocardiography in sports cardiology: An expert opinion statement of the Italian Society of Sports Cardiology (SIC sport). International Journal of Cardiology, 410, 132230. https://doi.org/10.1016/j.ijcard.2024.132230

Chorba, J. S., Shapiro, A. M., Le, L., Maidens, J., Prince, J., Pham, S., Kanzawa, M. M., Barbosa, D. N., Currie, C., Brooks, C., White, B. E., Huskin, A., Paek, J., Geocaris, J., Elnathan, D., Ronquillo, R., Kim, R., Alam, Z. H., Mahadevan, V. S., … Thomas, J. D. (2021). Deep Learning Algorithm for Automated Cardiac Murmur Detection via a Digital Stethoscope Platform. Journal of the American Heart Association, 10(9), e019905. https://doi.org/10.1161/JAHA.120.019905

Corrado, D., Link, M. S., & Calkins, H. (2017). Arrhythmogenic Right Ventricular Cardiomyopathy. New England Journal of Medicine, 376(1), 61–72. https://doi.org/10.1056/NEJMra1509267

Cotet, I.-G., Mateescu, D.-M., Ilie, A.-C., Guse, C., Pah, A.-M., Badalica-Petrescu, M., Iurciuc, S., Craciun, M.-L., Buleu, F., & Tudoran, C. (2025). Systematic Review and Meta-Analysis of Myocarditis Prevalence and Diagnostics in COVID-19:Acute, Post-COVID, and MIS-C (2020–2025). Journal of Clinical Medicine, 14(19), 7008. https://doi.org/10.3390/jcm14197008

Croon, P., Aminorroaya, A., Pedroso, A., Dhingra, L., & Khera, R. (2025). Abstract 4371172: Artificial Intelligence-based screening for Hypertrophic Cardiomyopathy from Single-lead Electrocardiograms: A Multinational Development and Validation Study. Circulation, 152(Suppl_3), A4371172–A4371172. https://doi.org/10.1161/circ.152.suppl_3.4371172

D’Ascenzi, F., Anselmi, F., Mondillo, S., Finocchiaro, G., Caselli, S., Garza, M. S.-D. L., Schmied, C., Adami, P. E., Galderisi, M., Adler, Y., Pantazis, A., Niebauer, J., Heidbuchel, H., Papadakis, M., & Dendale, P. (2021). The use of cardiac imaging in the evaluation of athletes in the clinical practice: A survey by the Sports Cardiology and Exercise Section of the European Association of Preventive Cardiology and University of Siena, in collaboration with the European Association of Cardiovascular Imaging, the European Heart Rhythm Association and the ESC Working Group on Myocardial and Pericardial Diseases. European Journal of Preventive Cardiology, 28(10), 1071–1077. https://doi.org/10.1177/2047487320932018

Drezner, J. A., Sharma, S., Baggish, A., Papadakis, M., Wilson, M. G., Prutkin, J. M., Gerche, A. L., Ackerman, M. J., Borjesson, M., Salerno, J. C., Asif, I. M., Owens, D. S., Chung, E. H., Emery, M. S., Froelicher, V. F., Heidbuchel, H., Adamuz, C., Asplund, C. A., Cohen, G., … Corrado, D. (2017). International criteria for electrocardiographic interpretation in athletes: Consensus statement. British Journal of Sports Medicine, 51(9), 704–731. https://doi.org/10.1136/bjsports-2016-097331

Duffy, G., Cheng, P. P., Yuan, N., He, B., Kwan, A. C., Shun-Shin, M. J., Alexander, K. M., Ebinger, J., Lungren, M. P., Rader, F., Liang, D. H., Schnittger, I., Ashley, E. A., Zou, J. Y., Patel, J., Witteles, R., Cheng, S., & Ouyang, D. (2022). High-Throughput Precision Phenotyping of Left Ventricular Hypertrophy with Cardiovascular Deep Learning. JAMA Cardiology, 7(4), 386. https://doi.org/10.1001/jamacardio.2021.6059

Fahmy, A. S., Rowin, E. J., Arafati, A., Al-Otaibi, T., Maron, M. S., & Nezafat, R. (2022). Radiomics and deep learning for myocardial scar screening in hypertrophic cardiomyopathy. Journal of Cardiovascular Magnetic Resonance, 24(1), 40. https://doi.org/10.1186/s12968-022-00869-x

Gräni, C. (2018). Anomalous Coronary Arteries and the Risk of Adverse Cardiac Events. Cardiovascular Medicine, 21(2), 39. https://doi.org/10.4414/cvm.2018.00540

Haq, I. U., Liu, K., Giudicessi, J. R., Siontis, K. C., Asirvatham, S. J., Attia, Z. I., Ackerman, M. J., Friedman, P. A., & Killu, A. M. (2024). Artificial intelligence-enhanced electrocardiogram for arrhythmogenic right ventricular cardiomyopathy detection. European Heart Journal - Digital Health, 5(2), 192–194. https://doi.org/10.1093/ehjdh/ztad078

Henning, R. J. (2024). The differentiation of the competitive athlete with physiologic cardiac remodeling from the athlete with cardiomyopathy. Current Problems in Cardiology, 49(9), 102473. https://doi.org/10.1016/j.cpcardiol.2024.102473

Huang, J., Huang, A., Xu, R., Wu, M., Wang, P., & Wang, Q. (2023). Automatic Segmentation and Assessment of Valvular Regurgitations with Color Doppler Echocardiography Images: A VABC-UNet-Based Framework. Bioengineering, 10(11), 1319. https://doi.org/10.3390/bioengineering10111319

Jiang, R., Cheung, C. C., Garcia-Montero, M., Davies, B., Cao, J., Redfearn, D., Laksman, Z. M., Grondin, S., Atallah, J., Escudero, C. A., Cadrin-Tourigny, J., Sanatani, S., Steinberg, C., Joza, J., Avram, R., Tadros, R., & Krahn, A. D. (2024). Deep Learning–Augmented ECG Analysis for Screening and Genotype Prediction of Congenital Long QT Syndrome. JAMA Cardiology, 9(4), 377–384. https://doi.org/10.1001/jamacardio.2024.0039

Johnson, J. N., & Ackerman, M. J. (2013). Return to play? Athletes with congenital long QT syndrome. British Journal of Sports Medicine, 47(1), 28–33. https://doi.org/10.1136/bjsports-2012-091751

Jone, P.-N., Gearhart, A., Lei, H., Xing, F., Nahar, J., Lopez-Jimenez, F., Diller, G.-P., Marelli, A., Wilson, L., Saidi, A., Cho, D., & Chang, A. C. (2022). Artificial Intelligence in Congenital Heart Disease: Current State and Prospects. JACC. Advances, 1(5), 100153. https://doi.org/10.1016/j.jacadv.2022.100153

Ko, W. Y., Siontis, K. C., Attia, Z. I., Carter, R. E., Kapa, S., Ommen, S. R., Demuth, S. J., Ackerman, M. J., Gersh, B. J., Arruda-Olson, A. M., Geske, J. B., Asirvatham, S. J., Lopez-Jimenez, F., Nishimura, R. A., Friedman, P. A., & Noseworthy, P. A. (2020). Detection of Hypertrophic Cardiomyopathy Using a Convolutional Neural Network-Enabled Electrocardiogram. Journal of the American College of Cardiology, 75(7), 722–733. https://doi.org/10.1016/j.jacc.2019.12.030

Kübler, J., Burgstahler, C., Brendel, J. M., Gassenmaier, S., Hagen, F., Klingel, K., Olthof, S.-C., Blume, K., Wolfarth, B., Mueller, K. a. L., Greulich, S., & Krumm, P. (2021). Cardiac MRI findings to differentiate athlete’s heart from hypertrophic (HCM), arrhythmogenic right ventricular (ARVC) and dilated (DCM) cardiomyopathy. The International Journal of Cardiovascular Imaging, 37(8), 2501–2515. https://doi.org/10.1007/s10554-021-02280-6

Lau, W. R., Lee, P. T., & Koh, C. H. (2023). Coronary Artery Anomalies – State of the Art Review. Current Problems in Cardiology, 48(11), 101935. https://doi.org/10.1016/j.cpcardiol.2023.101935

Lauschke, J., & Maisch, B. (2009). Athlete’s heart or hypertrophic cardiomyopathy? Clinical Research in Cardiology: Official Journal of the German Cardiac Society, 98(2), 80–88. https://doi.org/10.1007/s00392-008-0721-2

Liang, Y., Sau, A., Zeidaabadi, B., Barker, J., Patlatzoglou, K., Pastika, L., Sieliwonczyk, E., Whinnett, Z., Peters, N. S., Yu, Z., Liu, X., Wang, S., Lu, H., Kramer, D. B., Waks, J. W., Su, Y., Ge, J., & Ng, F. S. (2025). Artificial intelligence-enhanced electrocardiography to predict regurgitant valvular heart diseases: An international study. European Heart Journal, 46(44), 4823–4837. https://doi.org/10.1093/eurheartj/ehaf448

Lin, Y.-T., Lin, C.-S., Tsai, C.-S., Tsai, D.-J., Lou, Y.-S., Fang, W.-H., Lee, Y.-T., & Lin, C. (2024). Comprehensive clinical application analysis of artificial intelligence-enabled electrocardiograms for screening multiple valvular heart diseases. Aging, 16(10), 8717–8731. https://doi.org/10.18632/aging.205835

Łajczak, P. M., & Jóźwik, K. (2024). Artificial intelligence and myocarditis—A systematic review of current applications. Heart Failure Reviews, 29(6), 1217–1234. https://doi.org/10.1007/s10741-024-10431-9

Malhotra, A., & Sharma, S. (2017). Hypertrophic Cardiomyopathy in Athletes. European Cardiology Review, 12(2), 80–82. https://doi.org/10.15420/ecr.2017:12:1

Monopoli, G., Haas, D., Singh, A., Aabel, E. W., Ribe, M., Castrini, A. I., Hasselberg, N. E., Bugge, C., Five, C., Haugaa, K., Forsch, N., Thambawita, V., Balaban, G., & Maleckar, M. M. (2025). DeepValve: The first automatic detection pipeline for the mitral valve in Cardiac Magnetic Resonance imaging. Computers in Biology and Medicine, 192(Pt A), 110211. https://doi.org/10.1016/j.compbiomed.2025.110211

Neves, P. O., Andrade, J., & Monção, H. (2015). Coronary anomalies: What the radiologist should know. Radiologia Brasileira, 48(4), 233–241.

Palermi, S., Cavarretta, E., D’Ascenzi, F., Castelletti, S., Ricci, F., Vecchiato, M., Serio, A., Cavigli, L., Bossone, E., Limongelli, G., Biffi, A., Monda, E., La Gerche, A., Baggish, A., & D’Andrea, A. (2023). Athlete’s Heart: A Cardiovascular Step-By-Step Multimodality Approach. Reviews in Cardiovascular Medicine, 24(5), 151. https://doi.org/10.31083/j.rcm2405151

Pérez-Pomares, J. M., De La Pompa, J. L., Franco, D., Henderson, D., Ho, S. Y., Houyel, L., Kelly, R. G., Sedmera, D., Sheppard, M., Sperling, S., Thiene, G., Van Den Hoff, M., & Basso, C. (2016). Congenital coronary artery anomalies: A bridge from embryology to anatomy and pathophysiology—a position statement of the development, anatomy, and pathology ESC Working Group. Cardiovascular Research, 109(2), 204–216. https://doi.org/10.1093/cvr/cvv251

Priori, S. G., Wilde, A. A., Horie, M., Cho, Y., Behr, E. R., Berul, C., Blom, N., Brugada, J., Chiang, C.-E., Huikuri, H., Kannankeril, P., Krahn, A., Leenhardt, A., Moss, A., Schwartz, P. J., Shimizu, W., Tomaselli, G., & Tracy, C. (2013). Executive summary: HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes. Heart Rhythm, 10(12), e85-108. https://doi.org/10.1016/j.hrthm.2013.07.021

Rapezzi, C., Arbustini, E., Caforio, A. L. P., Charron, P., Gimeno-Blanes, J., Heliö, T., Linhart, A., Mogensen, J., Pinto, Y., Ristic, A., Seggewiss, H., Sinagra, G., Tavazzi, L., & Elliott, P. M. (2013). Diagnostic work-up in cardiomyopathies: Bridging the gap between clinical phenotypes and final diagnosis. A position statement from the ESC Working Group on Myocardial and Pericardial Diseases. European Heart Journal, 34(19), 1448–1458. https://doi.org/10.1093/eurheartj/ehs397

Schwartz, P. J., Ackerman, M. J., & Wilde, A. A. M. (2017). Channelopathies as Causes of Sudden Cardiac Death. Cardiac Electrophysiology Clinics, 9(4), 537–549. https://doi.org/10.1016/j.ccep.2017.07.005

Schwartz, P. J., Stramba-Badiale, M., Crotti, L., Pedrazzini, M., Besana, A., Bosi, G., Gabbarini, F., Goulene, K., Insolia, R., Mannarino, S., Mosca, F., Nespoli, L., Rimini, A., Rosati, E., Salice, P., & Spazzolini, C. (2009). Prevalence of the congenital long-QT syndrome. Circulation, 120(18), 1761–1767. https://doi.org/10.1161/CIRCULATIONAHA.109.863209

Shyam-Sundar, V., Harding, D., Khan, A., Abdulkareem, M., Slabaugh, G., Mohiddin, S. A., Petersen, S. E., & Aung, N. (2024). Imaging for the diagnosis of acute myocarditis: Can artificial intelligence improve diagnostic performance? Frontiers in Cardiovascular Medicine, 11. https://doi.org/10.3389/fcvm.2024.1408574

Siontis, K. C., Wieczorek, M. A., Maanja, M., Hodge, D. O., Kim, H. K., Lee, H. J., Lee, H., Lim, J., Park, C. S., Ariga, R., Raman, B., Mahmod, M., Watkins, H., Neubauer, S., Windecker, S., Siontis, G. C. M., Gersh, B. J., Ackerman, M. J., Attia, Z. I., … Noseworthy, P. A. (2024). Hypertrophic cardiomyopathy detection with artificial intelligence electrocardiography in international cohorts: An external validation study. European Heart Journal - Digital Health, 5(4), 416–426. https://doi.org/10.1093/ehjdh/ztae029

Smaranda, A. M., Drăgoiu, T. S., Caramoci, A., Afetelor, A. A., Ionescu, A. M., & Bădărău, I. A. (2024). Artificial Intelligence in Sports Medicine: Reshaping Electrocardiogram Analysis for Athlete Safety—A Narrative Review. Sports, 12(6), 144. https://doi.org/10.3390/sports12060144

Tschöpe, C., Ammirati, E., Bozkurt, B., Caforio, A. L. P., Cooper, L. T., Felix, S. B., Hare, J. M., Heidecker, B., Heymans, S., Hübner, N., Kelle, S., Klingel, K., Maatz, H., Parwani, A. S., Spillmann, F., Starling, R. C., Tsutsui, H., Seferovic, P., & Van Linthout, S. (2021). Myocarditis and inflammatory cardiomyopathy: Current evidence and future directions. Nature Reviews Cardiology, 18(3), 169–193. https://doi.org/10.1038/s41569-020-00435-x

Tso, J., Turner, C. G., & Kim, J. H. (2020). A Hidden Threat: Anomalous Aortic Origins of the Coronary Arteries in Athletes. Current Treatment Options in Cardiovascular Medicine, 22(12), 67. https://doi.org/10.1007/s11936-020-00859-1

Ullal, A. J., Abdelfattah, R. S., Ashley, E. A., & Froelicher, V. F. (2016). Hypertrophic Cardiomyopathy as a Cause of Sudden Cardiac Death in the Young: A Meta-Analysis. The American Journal of Medicine, 129(5), 486-496.e2. https://doi.org/10.1016/j.amjmed.2015.12.027

Viera, E., Meras, P., Merino, C., Perez, E., Ruiz, J., Balbacid, E., Abelleira, C., Aroca, A., & Moreno, R. (2024). Diagnosis of Congenital Heart Disease in Adulthood: How Often, How Relevant? The American Journal of Cardiology, 231, 72–74. https://doi.org/10.1016/j.amjcard.2024.09.004

Wang, Y.-R. (Joyce), Yang, K., Wen, Y., Wang, P., Hu, Y., Lai, Y., Wang, Y., Zhao, K., Tang, S., Zhang, A., Zhan, H., Lu, M., Chen, X., Yang, S., Dong, Z., Wang, Y., Liu, H., Zhao, L., Huang, L., … Zhao, S. (2024). Screening and diagnosis of cardiovascular disease using artificial intelligence-enabled cardiac magnetic resonance imaging. Nature Medicine, 30(5), 1471–1480. https://doi.org/10.1038/s41591-024-02971-2

Wilde, A. A. M., Semsarian, C., Márquez, M. F., Shamloo, A. S., Ackerman, M. J., Ashley, E. A., Sternick, E. B., Barajas-Martinez, H., Behr, E. R., Bezzina, C. R., Breckpot, J., Charron, P., Chockalingam, P., Crotti, L., Gollob, M. H., Lubitz, S., Makita, N., Ohno, S., Ortiz-Genga, M., … Developed in partnership with and endorsed by the European Heart Rhythm Association (EHRA), a branch of the E. S. of C. (ESC), the Heart Rhythm Society (HRS), the Asia Pacific Heart Rhythm Society (APHRS), and the Latin American Heart Rhythm Society (LAHRS). (2022). European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. EP Europace, 24(8), 1307–1367. https://doi.org/10.1093/europace/euac030

Yu, X., Yao, X., Wu, B., Zhou, H., Xia, S., Su, W., Wu, Y., & Zheng, X. (2022). Using deep learning method to identify left ventricular hypertrophy on echocardiography. The International Journal of Cardiovascular Imaging, 38(4), 759–769. https://doi.org/10.1007/s10554-021-02461-3

Zhang, Q., Fotaki, A., Ghadimi, S., Wang, Y., Doneva, M., Wetzl, J., Delfino, J. G., O’Regan, D. P., Prieto, C., & Epstein, F. H. (2024). Improving the efficiency and accuracy of cardiovascular magnetic resonance with artificial intelligence—Review of evidence and proposition of a roadmap to clinical translation. Journal of Cardiovascular Magnetic Resonance, 26(2). https://doi.org/10.1016/j.jocmr.2024.101051

Zhou, Z., Xie, K., Huang, Y., Zhang, W., Li, B., Zhong, J., Liao, X., Wang, C., & Zhuang, X. (2025). Automatic Diagnosis of Left Valvular Heart Disease Based on Artificial Intelligence Stethoscope. JACC. Advances, 4(11 Pt 2), 101993. https://doi.org/10.1016/j.jacadv.2025.101993

Views:

37

Downloads:

11

Published
2025-12-29
Citations
How to Cite
Weronika Kozak, Aleksandra Grygorowicz, Klaudia Baran, Michał Ględa, Michał Szyszka, Weronika Radecka, Agnieszka Szreiber, Karol Grela, Karolina Nowacka, Kamil Jabłoński, Anna Woźniak, & Karol Śliwa. (2025). THE TRANSFORMATION OF CARDIOVASCULAR SCREENING IN ATHLETES: THE MULTIMODAL ROLE OF ARTIFICIAL INTELLIGENCE IN DIFFERENTIATING CARDIAC PATHOLOGIES FROM PHYSIOLOGICAL ADAPTATION. International Journal of Innovative Technologies in Social Science, 2(4(48). https://doi.org/10.31435/ijitss.4(48).2025.4651

Most read articles by the same author(s)

1 2 > >>