MODERN BIOLOGICAL TREATMENT METHODS FOR ALOPECIA AREATA: A COMPREHENSIVE REVIEW

Keywords: Alopecia Areata, JAK Inhibitors, Biological Therapy, Immunomodulation

Abstract

Introduction: Alopecia areata (AA) is a chronic, immune-mediated hair-loss disorder driven by cytotoxic T-cell activation and loss of hair-follicle immune privilege. Janus kinase (JAK) inhibitors and emerging targeted biologics have reshaped treatment options for moderate-to-severe AA. This review compared three approved JAK-based therapies (ritlecitinib, baricitinib, deuruxolitinib) and summarized evidence on investigational biologic agents.

Materials and Methods: This narrative review was based on a structured search of PubMed and Google Scholar for English-language publications available up to 2025. Search terms included “alopecia areata,” “biologic therapy,” “JAK inhibitors,” “ritlecitinib,” “baricitinib,” “deuruxolitinib,” and “immunomodulation.” Phase 2 and 3 trials, early-phase studies, observational research, and review articles were screened. Full texts were assessed to extract information on mechanisms of action, JAK-isoform selectivity, clinical efficacy measured by SALT outcomes, safety, and emerging therapeutic strategies.

Results: All three JAK inhibitors showed significant efficacy compared with placebo but differed in selectivity and response dynamics. Ritlecitinib (JAK3/TEC) demonstrated a rapid onset of action and a favorable safety profile. Baricitinib (JAK1/2) produced gradual, sustained improvement supported by extensive long-term data. Deuruxolitinib (JAK1/2/TYK2) achieved high SALT ≤20 response rates across THRIVE-AA trials. Emerging biologics such as bempikibart (anti–IL-7Rα) and early investigational agents (ALD-102, DR-01) showed preliminary efficacy, though evidence remains limited by short follow-up and lack of predictive biomarkers.

Conclusions: JAK inhibitors constitute a major therapeutic advance for moderate-to-severe AA, providing meaningful clinical benefit with acceptable safety. Novel biologic agents may offer more selective and durable immune modulation. Long-term studies and development of precision-medicine approaches will be essential to optimize future AA management.

References

Ding, H., Yu, Z., Yao, H., Xu, X., Liu, Y., & Chen, M. (2025). Global burden of alopecia areata from 1990 to 2019 and emerging treatment trends analyzed through GBD 2019 and bibliometric data. Scientific Reports, 15, 25869. https://doi.org/10.1038/s41598-025-07224-x

Toussi, A., Barton, V. R., Le, S. T., Agbai, O. N., & Kiuru, M. (2021). Psychosocial and psychiatric comorbidities and health-related quality of life in alopecia areata: A systematic review. Journal of the American Academy of Dermatology, 85(1), 162–175. https://doi.org/10.1016/j.jaad.2020.06.047

Van Dalen, M., Muller, K. S., Kasperkovitz-Oosterloo, J. M., Okkerse, J. M. E., & Pasmans, S. G. M. A. (2022). Anxiety, depression, and quality of life in children and adults with alopecia areata: A systematic review and meta-analysis. Frontiers in Medicine, 9, 1054898. https://doi.org/10.3389/fmed.2022.1054898

Malhotra, K., & Madke, B. (2023). An updated review on current treatment of alopecia areata and newer therapeutic options. International Journal of Trichology, 15(1), 3–12. https://doi.org/10.4103/ijt.ijt_28_21

Ho, C.-Y., Wu, C.-Y., Chen, J. Y.-F., & Wu, C.-Y. (2023). Clinical and genetic aspects of alopecia areata: A cutting-edge review. Genes, 14(7), 1362. https://doi.org/10.3390/genes14071362

Jackow, C., Puffer, N., Hordinsky, M., Nelson, J., Tarrand, J., & Duvic, M. (1998). Alopecia areata and cytomegalovirus infection in twins: Genes versus environment? Journal of the American Academy of Dermatology, 38(3), 418–425. https://doi.org/10.1016/S0190-9622(98)70499-2

Petukhova, L., Duvic, M., Hordinsky, M., Norris, D., Price, V., Shimomura, Y., et al. (2010). Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature, 466(7302), 113–117. https://doi.org/10.1038/nature09114

Rajabi, F., Abdollahimajd, F., Jabalameli, N., Nassiri Kashani, M., & Firooz, A. (2022). The immunogenetics of alopecia areata. In N. Rezaei & F. Rajabi (Eds.), Immunogenetics of dermatologic diseases (Vol. 1367, pp. 19–59). Springer. https://doi.org/10.1007/978-3-030-92616-8_2

Rajabi, F., Drake, L. A., Senna, M. M., & Rezaei, N. (2018). Alopecia areata: A review of disease pathogenesis. British Journal of Dermatology, 179(5), 1033–1048. https://doi.org/10.1111/bjd.16808

Muntyanu, A., Gabrielli, S., Donovan, J., Gooderham, M., Guenther, L., Hanna, S., et al. (2023). The burden of alopecia areata: A scoping review focusing on quality of life, mental health and work productivity. Journal of the European Academy of Dermatology and Venereology, 37(8), 1490–1520. https://doi.org/10.1111/jdv.18926

Owecka, B., Tomaszewska, A., Dobrzeniecki, K., & Owecki, M. (2024). The hormonal background of hair loss in non-scarring alopecias. Biomedicines, 12(3), 513. https://doi.org/10.3390/biomedicines12030513

Kridin, K., Renert-Yuval, Y., Guttman-Yassky, E., & Cohen, A. D. (2020). Alopecia areata is associated with atopic diathesis: Results from a population-based study of 51,561 patients. Journal of Allergy and Clinical Immunology: In Practice, 8(4), 1323–1328.e1. https://doi.org/10.1016/j.jaip.2020.01.052

Magen, E., Chikovani, T., Waitman, D.-A., & Kahan, N. R. (2018). Association of alopecia areata with atopic dermatitis and chronic spontaneous urticaria. Allergy and Asthma Proceedings, 39(2), 96–102. https://doi.org/10.2500/aap.2018.39.4114

Xu, W., Zhang, H., Wan, S., Xie, B., & Song, X. (2024). Genetic links between atopy, allergy, and alopecia areata: Insights from a Mendelian randomization study. Allergy, Asthma & Clinical Immunology, 20, 32. https://doi.org/10.1186/s13223-024-00892-w

Won, E. J., Jang, H. H., Park, H., & Kim, S. J. (2022). A potential predictive role of the scalp microbiome profiling in patients with alopecia areata: Staphylococcus caprae, Corynebacterium, and Cutibacterium species. Microorganisms, 10(5), 864. https://doi.org/10.3390/microorganisms10050864

Brzychcy, K., Dróżdż, I., Skoczylas, S., Płoszaj, T., Sobolewska-Sztychny, D., Skibińska, M., et al. (2022). Gut microbiota in alopecia areata. Advances in Dermatology and Allergology, 39(6), 1162–1170. https://doi.org/10.5114/ada.2022.120453

Bi, D., Tey, J. T., Yao, D., Cao, Y., Qian, M., Shi, J., et al. (2024). The causal relationship between gut microbiota and alopecia areata: A Mendelian randomization analysis. Frontiers in Microbiology, 15, 1431646. https://doi.org/10.3389/fmicb.2024.1431646

Nikoloudaki, O., Pinto, D., Acin Albiac, M., Celano, G., Da Ros, A., De Angelis, M., et al. (2024). Exploring the gut microbiome and metabolome in individuals with alopecia areata disease. Nutrients, 16(6), 858. https://doi.org/10.3390/nu16060858

Bakry, O. A., Elshazly, R. M. A., Shoeib, M. A. M., & Gooda, A. (2014). Oxidative stress in alopecia areata: A case–control study. American Journal of Clinical Dermatology, 15(1), 57–64. https://doi.org/10.1007/s40257-013-0036-6

Yenin, J. Z., Serarslan, G., Yönden, Z., & Ulutaş, K. T. (2015). Investigation of oxidative stress in patients with alopecia areata and its relationship with disease severity, duration, recurrence and pattern. Clinical and Experimental Dermatology, 40(6), 617–621. https://doi.org/10.1111/ced.12556

Akar, A., Arca, E., Erbil, H., Akay, C., Sayal, A., & Gür, A. R. (2002). Antioxidant enzymes and lipid peroxidation in the scalp of patients with alopecia areata. Journal of Dermatological Science, 29(2), 85–90. https://doi.org/10.1016/S0923-1811(02)00015-4

Ma, Y., Sun, Z., Li, Y.-M., & Xu, H. (2023). Oxidative stress and alopecia areata. Frontiers in Medicine, 10, 1181572. https://doi.org/10.3389/fmed.2023.1181572

Bertolini, M., McElwee, K., Gilhar, A., Bulfone-Paus, S., & Paus, R. (2020). Hair follicle immune privilege and its collapse in alopecia areata. Experimental Dermatology, 29(8), 703–725. https://doi.org/10.1111/exd.14155

Šutić Udović, I., Hlača, N., Massari, L. P., Brajac, I., Kaštelan, M., & Vičić, M. (2024). Deciphering the complex immunopathogenesis of alopecia areata. International Journal of Molecular Sciences, 25(11), 5652. https://doi.org/10.3390/ijms25115652

Akbaba, E., Aydemir, E., & Ayaz, F. (2025). Alopecia areata: A comprehensive review of clinical, immunologic, and genetic perspectives. Discovery Immunology, 2, 8. https://doi.org/10.1007/s44368-025-00013-8

Żeberkiewicz, M., Rudnicka, L., & Malejczyk, J. (2020). Immunology of alopecia areata. Central European Journal of Immunology, 45(3), 325–333. https://doi.org/10.5114/ceji.2020.101264

Lensing, M., & Jabbari, A. (2022). An overview of JAK/STAT pathways and JAK inhibition in alopecia areata. Frontiers in Immunology, 13, 955035. https://doi.org/10.3389/fimmu.2022.955035

Strober, B. E., Siu, K., Alexis, A. F., Kim, G., Washenik, K., Sinha, A., et al. (2005). Etanercept does not effectively treat moderate to severe alopecia areata: An open-label study. Journal of the American Academy of Dermatology, 52(6), 1082–1084. https://doi.org/10.1016/j.jaad.2005.03.039

Posten, W., & Swan, J. (2005). Recurrence of alopecia areata in a patient receiving etanercept injections. Archives of Dermatology, 141(6), 759. https://doi.org/10.1001/archderm.141.6.759

Fabre, C., & Dereure, O. (2008). Worsening alopecia areata and de novo occurrence of multiple halo nevi in a patient receiving infliximab. Dermatology, 216(2), 185–186. https://doi.org/10.1159/000111523

Starace, M., Cedirian, S., Quadrelli, F., Pampaloni, F., Brunetti, T., Chessa, M. A., et al. (2024). Dupilumab and alopecia areata: A possible combined or disturbance therapy? A review of the literature. Dermatology Practical & Conceptual, 14, e2024270. https://doi.org/10.5826/dpc.1404a270

Słowińska, M., Kardynal, A., Warszawik, O., Czuwara, J., & Rudnicka, L. (2010). Alopecia areata developing parallel to improvement of psoriasis during ustekinumab therapy. Journal of Dermatology Case Reports, 4(1), 15–17. https://doi.org/10.3315/jdcr.2010.1041

Aleisa, A., Lim, Y., Gordon, S., Her, M. J., Zancanaro, P., Abudu, M., et al. (2019). Response to ustekinumab in three pediatric patients with alopecia areata. Pediatric Dermatology, 36(6), 863–866. https://doi.org/10.1111/pde.13699

Oliveira, A. B., Alpalhão, M., Filipe, P., & Maia-Silva, J. (2019). The role of Janus kinase inhibitors in the treatment of alopecia areata: A systematic review. Dermatologic Therapy, 32(4), e13053. https://doi.org/10.1111/dth.13053

Sanchez, K., Englander, H., Salloum, L., Gregoire, S., Biba, U., Ershadi, S., et al. (2025). Evaluating current and emergent JAK inhibitors for alopecia areata: A narrative review. Dermatology and Therapy, 15(11), 2749–2764. https://doi.org/10.1007/s13555-025-01517-9

Genovese, M. C., Kremer, J., Zamani, O., Ludivico, C., Krogulec, M., Xie, L., et al. (2016). Baricitinib in patients with refractory rheumatoid arthritis. New England Journal of Medicine, 374(13), 1243–1252. https://doi.org/10.1056/NEJMoa1507247

Kalil, A. C., Patterson, T. F., Mehta, A. K., Tomashek, K. M., Wolfe, C. R., Ghazaryan, V., et al. (2021). Baricitinib plus remdesivir for hospitalized adults with COVID-19. New England Journal of Medicine, 384(9), 795–807. https://doi.org/10.1056/NEJMoa2031994

Marconi, V. C., Ramanan, A. V., De Bono, S., Kartman, C. E., Krishnan, V., Liao, R., et al. (2021). Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): A randomised, double-blind, parallel-group, placebo-controlled phase 3 trial. The Lancet Respiratory Medicine, 9(12), 1407–1418. https://doi.org/10.1016/S2213-2600(21)00331-3

Radi, G., Simonetti, O., Rizzetto, G., Diotallevi, F., Molinelli, E., & Offidani, A. (2021). Baricitinib: The first JAK inhibitor approved in Europe for the treatment of moderate to severe atopic dermatitis in adult patients. Healthcare, 9(11), 1575. https://doi.org/10.3390/healthcare9111575

Damsky, W., & King, B. A. (2017). JAK inhibitors in dermatology: The promise of a new drug class. Journal of the American Academy of Dermatology, 76(4), 736–744. https://doi.org/10.1016/j.jaad.2016.12.005

Xing, L., Dai, Z., Jabbari, A., Cerise, J. E., Higgins, C. A., Gong, W., et al. (2014). Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nature Medicine, 20(9), 1043–1049. https://doi.org/10.1038/nm.3645

Kennedy Crispin, M., Ko, J. M., Craiglow, B. G., Li, S., Shankar, G., Urban, J. R., et al. (2016). Safety and efficacy of the JAK inhibitor tofacitinib citrate in patients with alopecia areata. JCI Insight, 1(15), e89776. https://doi.org/10.1172/jci.insight.89776

Schwartz, D. M., Kanno, Y., Villarino, A., Ward, M., Gadina, M., & O’Shea, J. J. (2017). JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nature Reviews Drug Discovery, 16(12), 843–862. https://doi.org/10.1038/nrd.2017.201

King, B., Ohyama, M., Kwon, O., Zlotogorski, A., Ko, J., Mesinkovska, N. A., et al. (2022). Two phase 3 trials of baricitinib for alopecia areata. New England Journal of Medicine, 386(18), 1687–1699. https://doi.org/10.1056/NEJMoa2110343

Kwon, O., Senna, M. M., Sinclair, R., Ito, T., Dutronc, Y., Lin, C.-Y., et al. (2023). Efficacy and safety of baricitinib in patients with severe alopecia areata over 52 weeks of continuous therapy in two phase III trials (BRAVE-AA1 and BRAVE-AA2). American Journal of Clinical Dermatology, 24(3), 443–451. https://doi.org/10.1007/s40257-023-00764-w

Di Corteranzo, I. G., Bongiovanni, E., Cedirian, S., Starace, M., Piraccini, B. M., Mastorino, L., et al. (2025). Safety profile of baricitinib in patients with severe alopecia areata: A prospective study. International Journal of Dermatology, 64(8), 1242–1245. https://doi.org/10.1111/ijd.17732

Piraccini, B. M., Cedirian, S., Pampaloni, F., Rapparini, L., Quadrelli, F., Bruni, F., et al. (2025). Effectiveness and safety of baricitinib in severe alopecia areata: 48-week results. Journal of the European Academy of Dermatology and Venereology. Advance online publication. https://doi.org/10.1111/jdv.70067

Senna, M., Mostaghimi, A., Ohyama, M., Sinclair, R., Dutronc, Y., Wu, W. S., et al. (2024). Long-term efficacy and safety of baricitinib in patients with severe alopecia areata: 104-week results from BRAVE-AA1 and BRAVE-AA2. Journal of the European Academy of Dermatology and Venereology, 38(3), 583–593. https://doi.org/10.1111/jdv.19665

Mahmoud, A. M. (2023). Effectiveness and safety of baricitinib in patients with alopecia areata: A systematic review and meta-analysis of randomized controlled trials. Current Medical Research and Opinion, 39(2), 249–257. https://doi.org/10.1080/03007995.2022.2135838

Dahabreh, D., Jung, S., Renert-Yuval, Y., Bar, J., Del Duca, E., & Guttman-Yassky, E. (2023). Alopecia areata: Current treatments and new directions. American Journal of Clinical Dermatology, 24(6), 895–912. https://doi.org/10.1007/s40257-023-00808-1

Blair, H. A. (2023). Ritlecitinib: First approval. Drugs, 83(14), 1315–1321. https://doi.org/10.1007/s40265-023-01928-y

King, B., Zhang, X., Harcha, W. G., Szepietowski, J. C., Shapiro, J., Lynde, C., et al. (2023). Efficacy and safety of ritlecitinib in adults and adolescents with alopecia areata: A randomised, double-blind, multicentre, phase 2b–3 trial. The Lancet, 401(10387), 1518–1529. https://doi.org/10.1016/S0140-6736(23)00222-2

Tziotzios, C., Sinclair, R., Lesiak, A., Mehlis, S., Kinoshita-Ise, M., Tsianakas, A., et al. (2025). Long-term safety and efficacy of ritlecitinib in adults and adolescents with alopecia areata and at least 25% scalp hair loss: Results from the ALLEGRO-LT phase 3 open-label study. Journal of the European Academy of Dermatology and Venereology, 39(6), 1152–1162. https://doi.org/10.1111/jdv.20526

Alfahl, S. O. A., & Alzolibani, A. (2025). Safety and efficacy of ritlecitinib for the treatment of patients with alopecia areata: A systematic review and meta-analysis of controlled trials. Journal of Clinical Medicine, 14(6), 1817. https://doi.org/10.3390/jcm14061817

Ma, T., Zhang, T., Miao, F., Liu, J., Zhu, Q., Chen, Z., et al. (2025). Alopecia areata: Pathogenesis, diagnosis, and therapies. MedComm, 6(1), e70182. https://doi.org/10.1002/mco2.70182

King, B., Senna, M. M., Mesinkovska, N. A., Lynde, C., Zirwas, M., Maari, C., et al. (2024). Efficacy and safety of deuruxolitinib, an oral selective Janus kinase inhibitor, in adults with alopecia areata: Results from the phase 3 randomized controlled trial (THRIVE-AA1). Journal of the American Academy of Dermatology, 91(5), 880–888. https://doi.org/10.1016/j.jaad.2024.06.097

Tsianakas, A., Passeron, T., Magnolo, N., Blume-Peytavi, U., Kelly, V., Day, I., et al. (2025). Efficacy and safety of deuruxolitinib, an oral selective Janus kinase 1/2 inhibitor, in adults with alopecia areata: Results from the THRIVE-AA2 phase 3 randomized double-blind controlled trial. Journal of the American Academy of Dermatology. Advance online publication. https://doi.org/10.1016/j.jaad.2025.11.070

Kalantan, M., Bashrahil, B., Aljuaid, A., Bogari, H., Samarkandy, S., & Jfri, A. (2025). Evaluation of the efficacy and treatment-emergent adverse events of deuruxolitinib for moderate to severe alopecia areata: A dose-ranging meta-analysis of 1,372 randomized patients. Frontiers in Medicine, 12, 1641245. https://doi.org/10.3389/fmed.2025.1641245

Q32 Bio Inc. (2025). A phase 2a proof-of-concept trial of bempikibart (ADX-914) for the treatment of severe alopecia areata (SIGNAL-AA).

Aldena Therapeutics. (2025). A clinical study to evaluate the safety, tolerability, pharmacokinetics and preliminary efficacy of ALD-102 solution in subjects with alopecia areata.

Dren Bio. (2025). A study of DR-01 in subjects with alopecia areata and vitiligo (NCT06602232).

Published
2026-01-26
Citations
How to Cite
Ilona Tadulewicz, Natalia Nowak, Mateusz Drozd, Aleksandra Kozłowska, Zuzanna Butkowska, Anna Kocik, Łucja Komisarczyk, Tadeusz Kornela, Aleksandra Góralska, & Zofia Gorzoch-Burduk. (2026). MODERN BIOLOGICAL TREATMENT METHODS FOR ALOPECIA AREATA: A COMPREHENSIVE REVIEW. International Journal of Innovative Technologies in Social Science, (1(49). https://doi.org/10.31435/ijitss.1(49).2026.4623