BEYOND THE CLINIC: A NARRATIVE REVIEW OF DIGITAL BIOMARKERS FOR MONITORING PSYCHOTIC DISORDERS IN NATURALISTIC SETTINGS
Abstract
Psychotic disorders remain a major challenge in psychiatry due to their chronicity and symptom heterogeneity. Digital phenotyping - the passive accumulation of behavioural data via various sensors - offers a pivotal shift toward ecologically valid, continuous monitoring that episodic clinical interviews cannot capture. This review aims to synthesise current literature on digital biomarkers, evaluating their role in predicting disease trajectories and social functioning while addressing inherent methodological and socio-ethical challenges. To achieve this, a comprehensive search of major databases, including PubMed, Scopus, and IEEE Xplore, was conducted to analyse key technological applications and clinical outcomes. We found that smartphones and medical-grade accelerometers remain the predominant tools for data collection, with GPS and mobility metrics serving as main proxies for monitoring symptoms. Simultaneously, next-generation technologies - such as AI-driven home EEG for sleep profiling, AI-driven audiovisual processing of patients’ affect and Natural Language Processing - are redefining the boundaries of what can be captured in the patient's daily environment. However, for these technologies to move beyond research pilots, future frameworks must address current methodological fragmentation through standardised reporting protocols. Ultimately, successful clinical implementation requires an evolution of consent models, ensuring that algorithmic precision is deployed within a user-centred architecture that prioritises patient autonomy and the therapeutic relationship.
References
Abdul Rashid, N. A., Martanto, W., Yang, Z., Wang, X., Heaukulani, C., Vouk, N., Buddhika, T., Wei, Y., Verma, S., Tang, C., Morris, R. J. T., & Lee, J. (2021). Evaluating the utility of digital phenotyping to predict health outcomes in schizophrenia: Protocol for the HOPE-S observational study. BMJ Open, 11(10), e046552. https://doi.org/10.1136/bmjopen-2020-046552
Adler, D. A., Ben-Zeev, D., Tseng, V. W.-S., Kane, J. M., Brian, R., Campbell, A. T., Hauser, M., Scherer, E. A., & Choudhury, T. (2020). Predicting Early Warning Signs of Psychotic Relapse From Passive Sensing Data: An Approach Using Encoder-Decoder Neural Networks. JMIR mHealth and uHealth, 8(8), e19962. https://doi.org/10.2196/19962
Alonso-Solís, A., Rubinstein, K., Corripio, I., Jaaskelainen, E., Seppälä, A., Vella, V. A., Caro-Mendivelso, J., Caspi, A., Isohanni, M., Unoka, Z., Van Der Graff, S., Farkas, K., Huerta-Ramos, E., Marcó-García, S., Stevens, M., Coenen, T., Hospedales, M., Berdún, J., the m-Resist group, & Grasa, E. M. (2018). Mobile therapeutic attention for treatment-resistant schizophrenia (m-RESIST): A prospective multicentre feasibility study protocol in patients and their caregivers. BMJ Open, 8(7), e021346. https://doi.org/10.1136/bmjopen-2017-021346
Arnautovska, U., Soole, R., Korman, N., Baker, A., & Siskind, D. (2025). Research Letter: Using participatory approach to facilitate engagement of people with lived experience of schizophrenia in research: A co-designed Participant Information and Consent Form. Australian & New Zealand Journal of Psychiatry, 00048674251388547. https://doi.org/10.1177/00048674251388547
Benoit, J., Onyeaka, H., Keshavan, M., & Torous, J. (2020). Systematic Review of Digital Phenotyping and Machine Learning in Psychosis Spectrum Illnesses. Harvard Review of Psychiatry, 28(5), 296–304. https://doi.org/10.1097/HRP.0000000000000268
Ben-Zeev, D., Brian, R., Wang, R., Wang, W., Campbell, A. T., Aung, M. S. H., Merrill, M., Tseng, V. W. S., Choudhury, T., Hauser, M., Kane, J. M., & Scherer, E. A. (2017). CrossCheck: Integrating self-report, behavioral sensing, and smartphone use to identify digital indicators of psychotic relapse. Psychiatric Rehabilitation Journal, 40(3), 266–275. https://doi.org/10.1037/prj0000243
Birnbaum, M. L., Ernala, S. K., Rizvi, A. F., De Choudhury, M., & Kane, J. M. (2017). A Collaborative Approach to Identifying Social Media Markers of Schizophrenia by Employing Machine Learning and Clinical Appraisals. Journal of Medical Internet Research, 19(8), e289. https://doi.org/10.2196/jmir.7956
Bladon, S., Eisner, E., Bucci, S., Oluwatayo, A., Martin, G. P., Sperrin, M., Ainsworth, J., & Faulkner, S. (2025). A systematic review of passive data for remote monitoring in psychosis and schizophrenia. Npj Digital Medicine, 8(1), 62. https://doi.org/10.1038/s41746-025-01451-2
Boland, R. J., Verduin, M. L., Ahmed, I., Baslet, G. C., Chan, C. H., Jeste, D. V., Krystal, J. H., Lewis-Fernández, R., Ries Merikangas, K., Moutier, C. Y., Pataki, C. S., Suzuki, J., Tamminga, C. A., Zemach, S., Zohar, J., & Ovid Technologies, Inc (Eds). (2025). Kaplan & Sadock’s comprehensive textbook of psychiatry (11th edition). Wolters Kluwer.
Chivilgina, O., Elger, B. S., & Jotterand, F. (2021). Digital Technologies for Schizophrenia Management: A Descriptive Review. Science and Engineering Ethics, 27(2), 25. https://doi.org/10.1007/s11948-021-00302-z
Chouinard, S., Poulin, J., Stip, E., & Godbout, R. (2004). Sleep in Untreated Patients With Schizophrenia: A Meta-Analysis. Schizophrenia Bulletin, 30(4), 957–967. https://doi.org/10.1093/oxfordjournals.schbul.a007145
Das, N., Choudhary, S., Nagendra, S., Dutt, S., Reddy, P., Naslund, J. A., Torous, J., & Mehta, U. M. (2025). Digital phenotyping correlates of cognitive performance in schizophrenia spectrum disorders from a longitudinal study. Schizophrenia Research, 283, 130–136. https://doi.org/10.1016/j.schres.2025.07.009
Del Piccolo, M. C., Hammoud, R., Khan, M., D’Costa, V. S., Almuqrin, A., Georgiades, A., Tognin, S., & Mechelli, A. (2025). Smartphone-Based Self-Monitoring in First Episode Psychosis: Mixed-Methods Study of Barriers and Facilitators to Engagement. Journal of Medical Internet Research, 27, e71989–e71989. https://doi.org/10.2196/71989
Eisner, E., Drake, R. J., Berry, N., Barrowclough, C., Emsley, R., Machin, M., & Bucci, S. (2019). Development and Long-Term Acceptability of ExPRESS, a Mobile Phone App to Monitor Basic Symptoms and Early Signs of Psychosis Relapse. JMIR mHealth and uHealth, 7(3), e11568. https://doi.org/10.2196/11568
Fonseka, L. N., & Woo, B. K. P. (2022). Social media and schizophrenia: An update on clinical applications. World Journal of Psychiatry, 12(7), 897–903. https://doi.org/10.5498/wjp.v12.i7.897
Fowler, J. C., Cope, N., Knights, J., Phiri, P., Makin, A., Peters-Strickland, T., & Rathod, S. (2019). Hummingbird Study: A study protocol for a multicentre exploratory trial to assess the acceptance and performance of a digital medicine system in adults with schizophrenia, schizoaffective disorder or first-episode psychosis. BMJ Open, 9(6), e025952. https://doi.org/10.1136/bmjopen-2018-025952
Gooding, P. (2019). Mapping the rise of digital mental health technologies: Emerging issues for law and society. International Journal of Law and Psychiatry, 67, 101498. https://doi.org/10.1016/j.ijlp.2019.101498
Gray, L. E., Buchanan, R. W., Keshavan, M. S., & Torous, J. (2023). Potential Role of Smartphone Technology in Advancing Work on Neurological Soft Signs with a Focus on Schizophrenia. Harvard Review of Psychiatry, 31(5), 226–233. https://doi.org/10.1097/HRP.0000000000000377
Gumley, A. I., Bradstreet, S., Ainsworth, J., Allan, S., Alvarez-Jimenez, M., Birchwood, M., Briggs, A., Bucci, S., Cotton, S., Engel, L., French, P., Lederman, R., Lewis, S., Machin, M., MacLennan, G., McLeod, H., McMeekin, N., Mihalopoulos, C., Morton, E., … Gleeson, J. (2022). Digital smartphone intervention to recognise and manage early warning signs in schizophrenia to prevent relapse: The EMPOWER feasibility cluster RCT. Health Technology Assessment, 26(27), 1–174. https://doi.org/10.3310/HLZE0479
Hadzi Boskovic, D., Liang, S., Parab, P., Wiggins, E., & Liberman, J. N. (2023). Real-World Evidence of Aripiprazole Tablets with Sensor: Treatment Patterns and Impacts on Psychiatric Healthcare Resource Utilization. ClinicoEconomics and Outcomes Research, Volume 15, 487–498. https://doi.org/10.2147/CEOR.S402357
Hassan, L., Milton, A., Sawyer, C., Casson, A. J., Torous, J., Davies, A., Ruiz-Yu, B., & Firth, J. (2025). Utility of Consumer-Grade Wearable Devices for Inferring Physical and Mental Health Outcomes in Severe Mental Illness: Systematic Review. JMIR Mental Health, 12, e65143. https://doi.org/10.2196/65143
Hau, C., Xia, W., Ryan, S., Firth, J., Linardon, J., & Torous, J. (2025). Smartphone monitoring and digital phenotyping apps for schizophrenia: A review of the academic literature. Schizophrenia Research, 281, 237–248. https://doi.org/10.1016/j.schres.2025.05.019
Jan, M., Coppin-Renz, A., West, R., Gallo, C. L., Cochran, J. M., Heumen, E. V., Fahmy, M., & Reuteman-Fowler, J. C. (2023). Safety Evaluation in Iterative Development of Wearable Patches for Aripiprazole Tablets With Sensor: Pooled Analysis of Clinical Trials. JMIR Formative Research, 7, e44768. https://doi.org/10.2196/44768
Jindal, K., Upadhyay, R., Padhy, P. K., & Longo, L. (2022). Bi-LSTM-deep CNN for schizophrenia detection using MSST-spectral images of EEG signals. In Artificial Intelligence-Based Brain-Computer Interface (pp. 145–162). Elsevier. https://doi.org/10.1016/B978-0-323-91197-9.00011-4
Khare, S. K., Bajaj, V., & Acharya, U. R. (2023). SchizoNET: A robust and accurate Margenau–Hill time-frequency distribution based deep neural network model for schizophrenia detection using EEG signals. Physiological Measurement, 44(3), 035005. https://doi.org/10.1088/1361-6579/acbc06
Kuhney, F. S., Strauss, G. P., Walker, E. F., James, S. H., & Mittal, V. A. (2025). Digital Phenotyping Measurement of Smartphone Social Behavior is Associated with Illness Progression Risk Scores in Young People at Clinical High Risk for Psychosis. Schizophrenia Bulletin, 51(6), 1693–1701. https://doi.org/10.1093/schbul/sbaf032
Lane, E., D’Arcey, J., Kidd, S., Onyeaka, H., Alon, N., Joshi, D., & Torous, J. (2023). Digital Phenotyping in Adults with Schizophrenia: A Narrative Review. Current Psychiatry Reports, 25(11), 699–706. https://doi.org/10.1007/s11920-023-01467-z
Lee, J., & Remington, G. (2015). Schizophrenia as a Lifelong Illness: Implications for Care. Annals of the Academy of Medicine, Singapore, 44(1), 26–28. https://doi.org/10.47102/annals-acadmedsg.V44N1p26
Manoach, D. S., Demanuele, C., Wamsley, E. J., Vangel, M., Montrose, D. M., Miewald, J., Kupfer, D., Buysse, D., Stickgold, R., & Keshavan, M. S. (2014). Sleep spindle deficits in antipsychotic-naïve early course schizophrenia and in non-psychotic first-degree relatives. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00762
Martinez-Martin, N., Greely, H. T., & Cho, M. K. (2021). Ethical Development of Digital Phenotyping Tools for Mental Health Applications: Delphi Study. JMIR mHealth and uHealth, 9(7), e27343. https://doi.org/10.2196/27343
Meyer, N., Kerz, M., Folarin, A., Joyce, D. W., Jackson, R., Karr, C., Dobson, R., & MacCabe, J. (2018). Capturing Rest-Activity Profiles in Schizophrenia Using Wearable and Mobile Technologies: Development, Implementation, Feasibility, and Acceptability of a Remote Monitoring Platform. JMIR mHealth and uHealth, 6(10), e188. https://doi.org/10.2196/mhealth.8292
Paraschiv, E.-A., Băjenaru, L., Petrache, C., Bica, O., & Nicolau, D.-N. (2024). AI-Driven Neuro-Monitoring: Advancing Schizophrenia Detection and Management Through Deep Learning and EEG Analysis. Future Internet, 16(11), 424. https://doi.org/10.3390/fi16110424
Parola, A., Lin, J. M., Simonsen, A., Bliksted, V., Zhou, Y., Wang, H., Inoue, L., Koelkebeck, K., & Fusaroli, R. (2023). Speech disturbances in schizophrenia: Assessing cross-linguistic generalizability of NLP automated measures of coherence. Schizophrenia Research, 259, 59–70. https://doi.org/10.1016/j.schres.2022.07.002
Plank, L., & Zlomuzica, A. (2024). Reduced speech coherence in psychosis-related social media forum posts. Schizophrenia, 10(1), 60. https://doi.org/10.1038/s41537-024-00481-1
Ranjan, T., Melcher, J., Keshavan, M., Smith, M., & Torous, J. (2022). Longitudinal symptom changes and association with home time in people with schizophrenia: An observational digital phenotyping study. Schizophrenia Research, 243, 64–69. https://doi.org/10.1016/j.schres.2022.02.031
Reilly, T., Mechelli, A., McGuire, P., Fusar-Poli, P., & Uhlhaas, P. J. (2019). E-Clinical High Risk for Psychosis: Viewpoint on Potential of Digital Innovations for Preventive Psychiatry. JMIR Mental Health, 6(10), e14581. https://doi.org/10.2196/14581
Staples, P., Torous, J., Barnett, I., Carlson, K., Sandoval, L., Keshavan, M., & Onnela, J.-P. (2017). A comparison of passive and active estimates of sleep in a cohort with schizophrenia. Npj Schizophrenia, 3(1), 37. https://doi.org/10.1038/s41537-017-0038-0
Terp, M., Jørgensen, R., Laursen, B. S., Mainz, J., & Bjørnes, C. D. (2018). A Smartphone App to Foster Power in the Everyday Management of Living With Schizophrenia: Qualitative Analysis of Young Adults’ Perspectives. JMIR Mental Health, 5(4), e10157. https://doi.org/10.2196/10157
Yang, Z., Heaukulani, C., Sim, A., Buddhika, T., Abdul Rashid, N. A., Wang, X., Zheng, S., Quek, Y. F., Basu, S., Lee, K. W., Tang, C., Verma, S., Morris, R. J. T., & Lee, J. (2025). Utility of Digital Phenotyping Based on Wrist Wearables and Smartphones in Psychosis: Observational Study. JMIR mHealth and uHealth, 13, e56185–e56185. https://doi.org/10.2196/56185
Zaher, F., Diallo, M., Achim, A. M., Joober, R., Roy, M.-A., Demers, M.-F., Subramanian, P., Lavigne, K. M., Lepage, M., Gonzalez, D., Zeljkovic, I., Davis, K., Mackinley, M., Sabesan, P., Lal, S., Voppel, A., & Palaniyappan, L. (2024). Speech markers to predict and prevent recurrent episodes of psychosis: A narrative overview and emerging opportunities. Schizophrenia Research, 266, 205–215. https://doi.org/10.1016/j.schres.2024.02.036
Zlatintsi, A., Filntisis, P. P., Garoufis, C., Efthymiou, N., Maragos, P., Menychtas, A., Maglogiannis, I., Tsanakas, P., Sounapoglou, T., Kalisperakis, E., Karantinos, T., Lazaridi, M., Garyfalli, V., Mantas, A., Mantonakis, L., & Smyrnis, N. (2022). E-Prevention: Advanced Support System for Monitoring and Relapse Prevention in Patients with Psychotic Disorders Analyzing Long-Term Multimodal Data from Wearables and Video Captures. Sensors, 22(19), 7544. https://doi.org/10.3390/s22197544
Copyright (c) 2025 Marta Cieślak, Anna Baranowska, Aleksandra Oparcik, Anastazja Orłowa, Laura Kurczoba, Anita Pakuła, Klaudia Martyna Patrzykąt, Julia Pawłowska, Kinga Szyszka, Kamil Turlej

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

