MOBILE HEALTH AND ARTIFICIAL INTELLIGENCE SOLUTIONS FOR MIGRAINE MANAGEMENT- A LITERATURE REVIEW
Abstract
Migraine is a common neurological condition that impairs patients' function, creates substantial societal costs, causes disability, and diminishes life quality. The wide range of symptoms, triggers, and treatment responses makes migraine diagnosis and management extremely difficult. The current management strategies rely on patient-maintained diaries, which are prone to recall bias and thus not effective for accurate tracking. Digital technologies, including mobile health applications and artificial intelligence systems, now play a significant role in migraine care, and they are revolutionizing treatment approaches. The new generation of applications uses AI to process biometric and behavioral data to enhance diagnostic accuracy and support individualized treatment plans, thereby supporting both patient autonomy and clinical decision-making. This review evaluates scientific evidence on mobile applications and artificial intelligence systems that support migraine diagnosis, tracking, and treatment. Research indicates the need for randomized controlled trials to establish the clinical value and advantages of these innovative solutions.
References
Torrente, A., Maccora, S., Prinzi, F., Alonge, P., Pilati, L., Lupica, A., Di Stefano, V., Camarda, C., Vitabile, S., & Brighina, F. (2024). The clinical relevance of artificial intelligence in migraine. Brain Sciences, 14(1), 85. https://doi.org/10.3390/brainsci14010085
Waliszewska-Prosół, M., Straburzyński, M., Kopka, M., & Nowaczewska, M. (2021). Migrena - współczesne metody leczenia, przyszłe terapie. Polski Przegląd Neurologiczny, 17(1), 19–35. https://doi.org/10.5603/PPN.2021.0003
Digre, K. B. (2019). What’s new in the treatment of migraine? Journal of Neuro-Ophthalmology, 39(3), 352–359. https://doi.org/10.1097/WNO.0000000000000837
Chen, H. H., Heath, K. M., & Patel, P. R. (2025). Migraine. Physical Medicine and Rehabilitation Clinics of North America, 36(4), 701–714. https://doi.org/10.1016/j.pmr.2025.08.002
Aguilar-Shea, A. L., & Diaz-de-Teran, J. (2021). Migraine review for general practice. Atencion Primaria, 54, 102208. https://doi.org/10.1016/j.aprim.2021.102208
Wijeratne, T., et al. (2025). Global, regional, and national burden of headache disorders, 1990–2021, with forecasts to 2050: A Global Burden of Disease study 2021. Cell Reports Medicine, 6(10), 102348.
https://doi.org/10.1016/j.xcrm.2025.102348
Headache Classification Committee of the International Headache Society (IHS). (2018). The International Classification of Headache Disorders, 3rd edition. Cephalalgia, 38(1), 1–211. https://doi.org/10.1177/0333102417738202
Minen, M. T., George, A., Camacho, E., Yao, L., Sahu, A., Campbell, M., Soviero, M., Hossain, Q., Verma, D., & Torous, J. (2022). Assessment of smartphone apps for common neurologic conditions: Headache, insomnia, and pain - Cross-sectional study. JMIR mHealth and uHealth, 10(6), e36761.
Bensink, M., Shah, S., Shah, N., Desai, P., Khan, F., Rubin, A., Ailani, J., Dougherty, C., McLeod, K., & Quillen, A. (2021). Tracking migraine digitally: The future of migraine management. The Journal for Nurse Practitioners, 17(6), 462-470. https://doi.org/10.1016/j.nurpra.2021.01.014
Young, N. P., Ridgeway, J. L., Haddad, T. C., Harper, S. B., Philpot, L. M., Christopherson, L. A., McColley, S. M., Phillips, S. A., Brown, J. K., Zimmerman, K. S., & Ebbert, J. O. (2023). Feasibility and usability of a mobile app-based interactive care plan for migraine in a community neurology practice: Development and pilot implementation study. JMIR Formative Research, 7, e48372. https://doi.org/10.2196/48372
Minen, M. T., Adhikari, S., Seng, E. K., Berk, T., Jinich, S., Powers, S. W., & Lipton, R. B. (2019). Smartphone-based migraine behavioral therapy: A single-arm study with assessment of mental health predictors. npj Digital Medicine, 2, 46.
https://doi.org/10.1038/s41746-019-0116-y
Minen, M. T., Friedman, B. W., Adhikari, S., Corner, S., Powers, S. W., Seng, E. K., Grudzen, C., & Lipton, R. B. (2021). Introduction of a smartphone-based behavioral intervention for migraine in the emergency department. General Hospital Psychiatry, 69, 12-19. https://doi.org/10.1016/j.genhosppsych.2020.12.009
Young, N. P., Stern, J. I., Steel, S. J., & Ebbert, J. O. (2025). Mobile app-based interactive care plan for migraine: Survey study of usability and improvement opportunities. JMIR Formative Research, 9, e66763. https://doi.org/10.2196/66763
Huttunen, H.-L., Halonen, R., & Koskimäki, H. (2017). Exploring use of wearable sensors to identify early symptoms of migraine attack. Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 500–505. https://doi.org/10.1145/3123024.3124435
Stubberud, A., Ingvaldsen, S. H., Brenner, E., Winnberg, I., Olsen, A., Gravdahl, G. B., Matharu, M. S., Nachev, P., & Tronvik, E. (2023). Forecasting migraine with machine learning based on mobile phone diary and wearable data. Cephalalgia, 43(5), 510-519. https://doi.org/10.1177/03331024231169244
Katsuki, M., Tatsumoto, M., Kimoto, K., Iiyama, T., Tajima, M., Munakata, T., Miyamoto, T., & Shimazu, T. (2023). Investigating the effects of weather on headache occurrence using a smartphone application and artificial intelligence: A retrospective observational cross-sectional study. Headache, 63(5), 585–600. https://doi.org/10.1111/head.14482
Lee, W., & Chu, M. K. (2025). The current role of artificial intelligence in the field of headache disorders, with a focus on migraine: A systematic review. Headache Pain Research, 26, 148-165. https://doi.org/10.62087/hpr.2024.0024
Adnyana, I. M. O., Suherlim, R., & Widyadharma, I. P. E. (2024). Various trigger factors of migraine: A review of pathophysiology and mechanism. International Journal of Research and Review, 11(4), 347-357. https://doi.org/10.52403/ijrr.20240439
Van Der Donckt, J., Stojchevska, M., Vandenbussche, N., Ongenae, F., De Brouwer, M., Steenwinckel, B., … Paemeleire, K. (2022). mBrain: Towards the continuous follow-up and headache classification of primary headache disorder patients. BMC Medical Informatics and Decision Making, 22(1), 1-34. https://doi.org/10.1186/s12911-022-01810-7
Kapustynska, V., Abromavičius, V., Serackis, A., Paulikas, Š., Ryliškienė, K., & Andruškevičius, S. (2024). Machine learning and wearable technology: Monitoring changes in biomedical signal patterns during pre-migraine nights. Healthcare, 12(17), 1701. https://doi.org/10.3390/healthcare12171701
Dumkrieger, G. (2025). The promise of machine learning in predicting migraine attacks. Cephalalgia, 45(11), 1–12. https://doi.org/10.1177/03331024251391207
Rożniecki, J. J., Stępień, A., & Domitrz, I. (2018). Leczenie migreny przewlekłej - zalecenia opracowane przez Grupę Ekspertów Polskiego Towarzystwa Bólów Głowy... Polski Przegląd Neurologiczny, 14(2), 60–66. https://doi.org/10.5603/ppn.59286
Ferroni, P., Zanzotto, F. M., Scarpato, N., Spila, A., Fofi, L., Egeo, G., Rullo, A., Palmirotta, R., Barbanti, P., & Guadagni, F. (2020). Machine learning approach to predict medication overuse in migraine patients. Computational and Structural Biotechnology Journal, 18, 1487–1496. https://doi.org/10.1016/j.csbj.2020.06.006
Chaix, B., Bibault, J.-E., Romain, R., Guillemass, A., Neeral, M., Delamon, G., Moussalli, J., & Brouard, B. (2022). Assessing the performances of a chatbot to collect real-life data of patients suffering from primary headache disorders. Digital Health, 8, 20552076221097783. https://doi.org/10.1177/20552076221097783
Espinoza-Vinces, C., Cantillo Martínez, M., Atorrasagasti-Villar, A., Gimeno Rodríguez, M. del M., Ezpeleta, D., & Irimia, P. (2025). Artificial intelligence in headache medicine between automation and the doctor-patient relationship. A systematic review. The Journal of Headache and Pain, 26(1), 192. https://doi.org/10.1186/s10194-025-02143-8
Cowan, R. P., Rapoport, A. M., Blythe, J., Rothrock, J., Knievel, K., Peretz, A. M., Ekpo, E., Sanjanwala, B. M., & Woldeamanuel, Y. W. (2022). Diagnostic accuracy of an artificial intelligence online engine in migraine: A multi-center study. Headache, 62(8), 870–882. https://doi.org/10.1111/head.14324
Woldeamanuel, Y. W., & Cowan, R. P. (2022). Computerized migraine diagnostic tools: A systematic review. Therapeutic Advances in Chronic Disease, 13, 20406223211065235. https://doi.org/10.1177/20406223211065235
Petrušić, I. (2025). Digital phenotyping for migraine: A game-changer for research and management. Cephalalgia, 45(7), 113–133. https://doi.org/10.1177/03331024251363568
Stubberud, A., Gray, R., Tronvik, E., Matharu, M., & Nachev, P. (2022). Machine prescription for chronic migraine. Brain Communications, 4(3), fcac059. https://doi.org/10.1093/braincomms/fcac059
Gazerani, P. (2023). Intelligent digital twins for personalized migraine care. Journal of Personalized Medicine, 13(8), 1255. https://doi.org/10.3390/jpm13081255
Spina, E., Tedeschi, G., Russo, A., Trojsi, F., Iodice, R., Tozza, S., Iovino, A., Iodice, F., Abbadessa, G., di Lorenzo, F., Miele, G., Maida, E., Cerullo, G., Sparaco, M., Silvestro, M., Leocani, L., Bonavita, S., Manganelli, F., & Lavorgna, L. (2022). Telemedicine application to headache: A critical review. Neurological Sciences, 43(3), 3795-3801. https://doi.org/10.1007/s10072-022-05910-6
Schroeder, J., Chung, C.-F., Epstein, D. A., Karkar, R., Parsons, A., Murinova, N., Fogarty, J., & Munson, S. A. (2018). Examining self-tracking by people with migraine: Goals, needs, and opportunities in a chronic health condition. Proceedings of the ACM on Human-Computer Interaction, 2(CSCW), Article 135. https://doi.org/10.1145/3196709.3196738
Copyright (c) 2025 Kinga Szyszka, Anna Baranowska, Marta Cieślak, Laura Kurczoba, Aleksandra Oparcik, Anastazja Orłowa, Anita Pakuła, Klaudia Martyna Patrzykąt, Julia Pawłowska, Kamil Turlej

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

