ARTIFICIAL INTELLIGENCE–ENHANCED RETINAL IMAGING IN DIABETIC RETINOPATHY: OPPORTUNITIES AND LIMITATIONS
Abstract
Background: Diabetic retinopathy (DR) remains a leading cause of vision loss worldwide, making early detection and effective screening essential for preventing irreversible complications. Traditional imaging methods, such as fundus photography and optical coherence tomography (OCT), identify established retinal lesions but often fail to capture subtle early microvascular changes.
Objective: This review examines current retinal imaging techniques and evaluates the integration of artificial intelligence (AI) to enhance the detection of DR.
Methods: The analysis focuses on studies investigating AI applications with fundus photography, OCT, and optical coherence tomography angiography (OCTA), highlighting their diagnostic performance and potential to improve screening programs.
Results: OCTA enables high-resolution, non-invasive visualization of retinal and choroidal vasculature, allowing early detection of microaneurysms, capillary non-perfusion, and other biomarkers. AI integration improves diagnostic accuracy, sensitivity, and specificity, reducing the burden on clinicians. However, clinical adoption is limited by small, homogeneous datasets, lack of standardized imaging protocols, and limited explainability of AI algorithms.
Conclusion: AI-enhanced retinal imaging shows significant promise for early detection and improved management of DR. Future efforts should focus on multicenter validation, data standardization, and development of explainable AI models to enable safe, effective, and equitable implementation in routine clinical practice.
References
Seo, H., Park, S. J., & Song, M. (2025). Diabetic Retinopathy (DR): Mechanisms, Current Therapies, and Emerging Strategies. Cells, 14(5), 376. https://doi.org/10.3390/cells14050376
Sinclair, S. H., & Schwartz, S. (2024). Diabetic retinopathy: New concepts of screening, monitoring, and interventions. Survey of ophthalmology, 69(6), 882–892. https://doi.org/10.1016/j.survophthal.2024.07.001
Wang, Z., Li, Z., Li, K., Mu, S., Zhou, X., & Di, Y. (2023). Performance of artificial intelligence in diabetic retinopathy screening: A systematic review and meta-analysis of prospective studies. Frontiers in Endocrinology, 14, Article 1197783. https://doi.org/10.3389/fendo.2023.1197783
Vujosevic, S., Limoli, C., & Nucci, P. (2024). Novel artificial intelligence for diabetic retinopathy and diabetic macular edema: what is new in 2024?. Current opinion in ophthalmology, 35(6), 472–479. https://doi.org/10.1097/ICU.0000000000001084
Bai, Y., Wang, X., Qi, F., Zuo, X., & Zou, G. (2025). Mechanisms of action of retinal microglia in diabetic retinopathy (Review). International Journal of Molecular Medicine, 56, 202. https://doi.org/10.3892/ijmm.2025.5643
Morya, A. K., Ramesh, P. V., Nishant, P., Kaur, K., Gurnani, B., Heda, A., & Salodia, S. (2024). Diabetic retinopathy: A review on its pathophysiology and novel treatment modalities. World journal of methodology, 14(4), 95881. https://doi.org/10.5662/wjm.v14.i4.95881
Rajesh, A. E., Davidson, O. Q., Lee, C. S., & Lee, A. Y. (2023). Artificial Intelligence and Diabetic Retinopathy: AI Framework, Prospective Studies, Head-to-head Validation, and Cost-effectiveness. Diabetes care, 46(10), 1728–1739. https://doi.org/10.2337/dci23-0032
Burlina, S., Radin, S., Poggiato, M., Cioccoloni, D., Raimondo, D., Romanello, G., Tommasi, C., & Lombardi, S. (2024). Screening for diabetic retinopathy with artificial intelligence: a real world evaluation. Acta diabetologica, 61(12), 1603–1607. https://doi.org/10.1007/s00592-024-02333-x
Nawaz, T. H., Naseer, U., Mursala, T., Susai, D. I., Ramaprabha, P., Syed, M. S., Ibrahim, A. A., Shahnawaz, T., & Yousaf, A. (2025). Artificial intelligence versus manual screening for the detection of diabetic retinopathy: A comparative systematic review and meta-analysis. Frontiers in Medicine, 12, Article 1519768. https://doi.org/10.3389/fmed.2025.1519768
Ansari, A., Ansari, N., Khalid, U., Markov, D., Bechev, K., Aleksiev, V., Markov, G., & Poryazova, E. (2025). The Role of Artificial Intelligence in the Diagnosis and Management of Diabetic Retinopathy. Journal of clinical medicine, 14(14), 5150. https://doi.org/10.3390/jcm14145150
Arora, L., Singh, S.K., Kumar, S. et al. (2024) Ensemble deep learning and EfficientNet for accurate diagnosis of diabetic retinopathy. Sci Rep 14, 30554. https://doi.org/10.1038/s41598-024-81132-4
Lupidi, M., Danieli, L., Fruttini, D., Nicolai, M., Lassandro, N., Chhablani, J., & Mariotti, C. (2023). Artificial intelligence in diabetic retinopathy screening: clinical assessment using handheld fundus camera in a real-life setting. Acta diabetologica, 60(8), 1083–1088. https://doi.org/10.1007/s00592-023-02104-0
Pradeep, K., Jeyakumar, V., Bhende, M., Shakeel, A., & Mahadevan, S. (2024). Artificial intelligence and hemodynamic studies in optical coherence tomography angiography for diabetic retinopathy evaluation: A review. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine, 238(1), 3–21. https://doi.org/10.1177/09544119231213443
Alqahtani, A. S., Alshareef, W. M., Aljadani, H. T., Hawsawi, W. O., & Shaheen, M. H. (2025). The efficacy of artificial intelligence in diabetic retinopathy screening: a systematic review and meta-analysis. International journal of retina and vitreous, 11(1), 48. https://doi.org/10.1186/s40942-025-00670-9
Kong, M., & Song, S. J. (2024). Artificial Intelligence Applications in Diabetic Retinopathy: What We Have Now and What to Expect in the Future. Endocrinology and metabolism (Seoul, Korea), 39(3), 416–424. https://doi.org/10.3803/EnM.2023.1913
Poly, T. N., Islam, M. M., Walther, B. A., Lin, M. C., & Jack Li, Y. C. (2023). Artificial intelligence in diabetic retinopathy: Bibliometric analysis. Computer methods and programs in biomedicine, 231, 107358. https://doi.org/10.1016/j.cmpb.2023.107358
Zhang, Q., Gong, D., Huang, M., Zhu, Z., Yang, W., & Ma, G. (2025). Recent advances and applications of optical coherence tomography angiography in diabetic retinopathy. Frontiers in endocrinology, 16, 1438739. https://doi.org/10.3389/fendo.2025.1438739
Hayati, A., Abdol Homayuni, M. R., Sadeghi, R., Asadigandomani, H., Dashtkoohi, M., Eslami, S., & Soleimani, M. (2025). Advancing Diabetic Retinopathy Screening: A Systematic Review of Artificial Intelligence and Optical Coherence Tomography Angiography Innovations. Diagnostics, 15(6), 737. https://doi.org/10.3390/diagnostics15060737
Dejene, F., Debelee, T., Schwenker, F. et al. (2025). Diabetic retinopathy screening using machine learning: a systematic review. BMC Biomedical Engineering, 7, 12. https://doi.org/10.1186/s42490-025-00098-0
Haq, N.U., Waheed, T., Ishaq, K. et al. (2024). Computationally efficient deep learning models for diabetic retinopathy detection: a systematic literature review. Artificial Intelligence Review, 57, 309. https://doi.org/10.1007/s10462-024-10942-9
Zhelev, Z., Peters, J., Rogers, M., Allen, M., Kijauskaite, G., Seedat, F., Wilkinson, E., & Hyde, C. (2023). Test accuracy of artificial intelligence-based grading of fundus images in diabetic retinopathy screening: A systematic review. Journal of medical screening, 30(3), 97–112. https://doi.org/10.1177/09691413221144382
Riotto, E., Gasser, S., Potic, J., Sherif, M., Stappler, T., Schlingemann, R., Wolfensberger, T., & Konstantinidis, L. (2024). Accuracy of autonomous artificial intelligence-based diabetic retinopathy screening in real-life clinical practice. Journal of Clinical Medicine, 13(16), 4776. https://doi.org/10.3390/jcm13164776
Grzybowski, A., Brona, P., Krzywicki, T. et al. (2025). Diagnostic Accuracy of Automated Diabetic Retinopathy Image Assessment Software: IDx-DR and RetCAD. Ophthalmology and Therapy, 14, 73–84. https://doi.org/10.1007/s40123-024-01049-z
Vought, R., Vought, V., Shah, M., Szirth, B., & Bhagat, N. (2023). EyeArt artificial intelligence analysis of diabetic retinopathy in retinal screening events. International ophthalmology, 43(12), 4851–4859. https://doi.org/10.1007/s10792-023-02887-9
Farahat, Z., Zrira, N., Souissi, N., Bennani, Y., Bencherif, S., Benamar, S., Belmekki, M., Ngote, M. N., & Megdiche, K. (2024). Diabetic retinopathy screening through artificial intelligence algorithms: A systematic review. Survey of ophthalmology, 69(5), 707–721. https://doi.org/10.1016/j.survophthal.2024.05.008
Yao, J., Lim, J., Lim, G.Y.S. et al. (2024). Novel artificial intelligence algorithms for diabetic retinopathy and diabetic macular edema. Eye and Vision, 11, 23. https://doi.org/10.1186/s40662-024-00389-y
Nakayama, L. F., Zago Ribeiro, L., Novaes, F., Miyawaki, I. A., Miyawaki, A. E., de Oliveira, J. A. E., Oliveira, T., Malerbi, F. K., Regatieri, C. V. S., Celi, L. A., & Silva, P. S. (2023). Artificial intelligence for telemedicine diabetic retinopathy screening: a review. Annals of medicine, 55(2), 2258149. https://doi.org/10.1080/07853890.2023.2258149
Joseph, S., Selvaraj, J., Mani, I., Kumaragurupari, T., Shang, X., Mudgil, P., Ravilla, T., & He, M. (2024). Diagnostic Accuracy of Artificial Intelligence-Based Automated Diabetic Retinopathy Screening in Real-World Settings: A Systematic Review and Meta-Analysis. American journal of ophthalmology, 263, 214–230. https://doi.org/10.1016/j.ajo.2024.02.012
Wolf, R. M., Channa, R., Liu, T. Y. A., Zehra, A., Bromberger, L., Patel, D., Ananthakrishnan, A., Brown, E. A., Prichett, L., Lehmann, H. P., & Abramoff, M. D. (2024). Autonomous artificial intelligence increases screening and follow-up for diabetic retinopathy in youth: the ACCESS randomized control trial. Nature communications, 15(1), 421. https://doi.org/10.1038/s41467-023-44676-z
Sacchini, F., Mancin, S., Cangelosi, G., Palomares, S. M., Caggianelli, G., Gravante, F., & Petrelli, F. (2025). The role of artificial intelligence in diabetic retinopathy screening in type 1 diabetes: A systematic review. Journal of diabetes and its complications, 39(10), 109139. https://doi.org/10.1016/j.jdiacomp.2025.109139
Kuklinski, E. J., Henry, R. K., Shah, M., Zarbin, M. A., Szirth, B., & Bhagat, N. (2023). Screening of Diabetic Retinopathy Using Artificial Intelligence and Tele-Ophthalmology. Journal of diabetes science and technology, 17(6), 1724–1725. https://doi.org/10.1177/19322968231194041
Copyright (c) 2025 Julia Pawłowska, Kinga Szyszka, Anna Baranowska, Marta Cieślak, Laura Kurczoba, Aleksandra Oparcik, Anastazja Orłowa, Anita Pakuła, Klaudia Martyna Patrzykąt, Kamil Turlej

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

