PREMATURE HAIR GRAYING: INTEGRATING MECHANISMS, RISK FACTORS, AND THERAPEUTIC APPROACHES
Abstract
Premature graying of hair (PMGH) is a phenomenon resulting from the interaction of genetic, metabolic, and environmental factors, leading to melanocyte dysfunction in the hair follicle. This article discusses the key etiopathogenic mechanisms of PMGH, with particular emphasis on the roles of oxidative stress, micronutrient deficiencies, autoimmune processes, hormonal disorders, and metabolic alterations. Population data indicate that gender and ethnicity influence both the incidence and course of PMGH, while clinical observations suggest that it may serve as an early marker of endocrine, autoimmune, hematological, or cardiovascular disorders. Although the psychosocial burden varies, in many young individuals graying negatively affects their sense of attractiveness and overall mental well-being. Current therapeutic strategies include optimizing nutritional status, antioxidant supplementation, modulation of α-MSH pathways, as well as selected pharmacological treatments and phototherapy. Case reports confirm the possibility of partial or complete repigmentation. Despite a growing body of evidence, the pathogenesis of PMGH remains incompletely understood, highlighting the need for further research into the mechanisms underlying the reversibility of this process and the development of effective, targeted therapies.
References
Van Neste, D., & Tobin, D. J. (2004). Hair cycle and hair pigmentation: Dynamic interactions and changes associated with aging. Micron, 35(3), 193–200. https://doi.org/10.1016/j.micron.2003.11.006
Pandhi, D., & Khanna, D. (2013). Premature graying of hair. Indian Journal of Dermatology, Venereology and Leprology, 79(5), 641–653. https://doi.org/10.4103/0378-6323.116733
Poonia, K., & Bhalla, M. (2024). Premature graying of hair: A comprehensive review and recent insights. Indian Dermatology Online Journal, 15(5), 721. https://doi.org/10.4103/idoj.idoj_807_23
Aldamanhori, I. B., Alghamdi, N. J., Alharbi, S. M., Aljarri, S. A., AlHemli, H. A., & Abdel Wahab, M. M. (2025). Premature hair graying and its associated factors among medical students and resident physicians at Imam Abdulrahman Bin Faisal University. Healthcare, 13(10), Article 1185. https://doi.org/10.3390/healthcare13101185
Tobin, D. J., & Paus, R. (2001). Graying: Gerontobiology of the hair follicle pigmentary unit. Experimental Gerontology, 36(1), 29–54. https://doi.org/10.1016/S0531-5565(00)00210-2
Fatemi Naieni, F., Ebrahimi, B., Vakilian, H. R., & Shahmoradi, Z. (2012). Serum iron, zinc, and copper concentration in premature graying of hair. Biological Trace Element Research, 146(1), 30–34. https://doi.org/10.1007/s12011-011-9223-6
Desai, D. D., et al. (2025). Premature hair graying: A multifaceted phenomenon. International Journal of Dermatology, 64(5), 819–829. https://doi.org/10.1111/ijd.17580
Panhard, S., Lozano, I., & Loussouarn, G. (2012). Greying of the human hair: A worldwide survey, revisiting the “50” rule of thumb. British Journal of Dermatology, 167(4), 865–873. https://doi.org/10.1111/j.1365-2133.2012.11095.x
Anggraini, D. R., Feriyawati, L., Sitorus, M. S., Widyawati, T., & Syarifah, S. (2022). Analysis of zinc and copper serum levels in premature hair graying at young age. Open Access Macedonian Journal of Medical Sciences, 10(A), 283–286. https://doi.org/10.3889/oamjms.2022.8383
Yang, F. C., Zhang, Y., & Rheinstädter, M. C. (2014). The structure of people’s hair. PeerJ, 2014(1), e619. https://doi.org/10.7717/peerj.619
Yu, Y., Yang, W., Wang, B., & Meyers, M. A. (2017). Structure and mechanical behavior of human hair. Materials Science and Engineering: C, 73, 152–163. https://doi.org/10.1016/j.msec.2016.12.008
Zhang, X., Zhu, J., Zhang, J., & Zhao, H. (2023). Melanocyte stem cells and hair graying. Journal of Cosmetic Dermatology, 22(6), 1720–1723. https://doi.org/10.1111/jocd.15652
Xu, X., Pang, Y., & Fan, X. (2025). Mitochondria in oxidative stress, inflammation and aging: From mechanisms to therapeutic advances. Signal Transduction and Targeted Therapy, 10(1), Article 190. https://doi.org/10.1038/s41392-025-02253-4
Trüeb, R. M. (2009). Oxidative stress in ageing of hair. International Journal of Trichology, 1(1), 6–14. https://doi.org/10.4103/0974-7753.51923
Trüeb, R. M. (2015). The impact of oxidative stress on hair. International Journal of Cosmetic Science, 37(Suppl. 2), 25–30. https://doi.org/10.1111/ics.12286
Kaur, K., Kaur, R., & Bala, I. (2019). Therapeutics of premature hair graying: A long journey ahead. Journal of Cosmetic Dermatology, 18(5), 1206–1214. https://doi.org/10.1111/jocd.13000
Nishimura, E. K., Granter, S. R., & Fisher, D. E. (2005). Mechanisms of hair graying: Incomplete melanocyte stem cell maintenance in the niche. Science, 307(5710), 720–724. https://doi.org/10.1126/science.1099593
Mak, S. S., Moriyama, M., Nishioka, E., Osawa, M., & Nishikawa, S. I. (2006). Indispensable role of Bcl2 in the development of the melanocyte stem cell. Developmental Biology, 291(1), 144–153. https://doi.org/10.1016/j.ydbio.2005.12.025
Choi, Y. J., Yoon, T. J., & Lee, Y. H. (2008). Changing expression of the genes related to human hair graying. European Journal of Dermatology, 18(4), 397–399. https://doi.org/10.1684/ejd.2008.0434
Jo, S. K., Lee, J. Y., Lee, Y., Kim, C. D., Lee, J. H., & Lee, Y. H. (2018). Three streams for the mechanism of hair graying. Annals of Dermatology, 30(4), 397. https://doi.org/10.5021/ad.2018.30.4.397
Buckingham, E. M., & Klingelhutz, A. J. (2011). The role of telomeres in the ageing of human skin. Experimental Dermatology, 20(4), 297. https://doi.org/10.1111/j.1600-0625.2010.01242.x
Anggraini, D. R., Feriyawati, L., Hidayat, H., & Wahyuni, A. S. (2019). Risk factors associated with premature hair greying of young adult. Open Access Macedonian Journal of Medical Sciences, 7(22), 3762–3764. https://doi.org/10.3889/oamjms.2019.498
Shin, H., et al. (2015). Association of premature hair graying with family history, smoking, and obesity: A cross-sectional study. Journal of the American Academy of Dermatology, 72(2), 321–327. https://doi.org/10.1016/j.jaad.2014.11.008
Mediratta, V., Rana, S., Rao, A., & Chander, R. (2018). An observational, epidemiological study on pattern of clinical presentation and associated laboratory findings in patients of premature hair graying. International Journal of Trichology, 10(2), 93. https://doi.org/10.4103/ijt.ijt_65_17
Sonthalia, S., Priya, A., & Tobin, D. J. (2017). Demographic characteristics and association of serum vitamin B12, ferritin and thyroid function with premature canities in Indian patients from an urban skin clinic of North India. Indian Journal of Dermatology, 62(3), 304–308. https://doi.org/10.4103/ijd.ijd_221_17
Redondo, P., et al. (2007). Repigmentation of gray hair after thyroid hormone treatment. Actas Dermo-Sifiliográficas (English Edition), 98(9), 603–610. https://doi.org/10.1016/s1578-2190(07)70525-5
Rosen, C. J., Holick, M. F., & Millard, P. S. (1994). Premature graying of hair is a risk marker for osteopenia. Journal of Clinical Endocrinology & Metabolism, 79(3), 854–857. https://doi.org/10.1210/jcem.79.3.8077373
Aydin, A. F., Aydingöz, İ. E., Doǧru-Abbasoǧlu, S., Vural, P., & Uysal, M. (2017). Association of leukotrichia in vitiligo and Asp148Glu polymorphism of apurinic/apyrimidinic endonuclease 1. International Journal of Trichology, 9(4), 171. https://doi.org/10.4103/ijt.ijt_4_17
Al Jasser, M. I., Ghwish, B., Al Issa, A., & Mulekar, S. V. (2013). Repigmentation of vitiligo-associated leukotrichia after autologous, non-cultured melanocyte-keratinocyte transplantation. International Journal of Dermatology, 52(11), 1383–1386. https://doi.org/10.1111/ijd.12134
Dawber, R. P. R. (1970). Integumentary associations of pernicious anaemia. British Journal of Dermatology, 82(3), 221–223. https://doi.org/10.1111/j.1365-2133.1970.tb12428.x
Noppakun, N., & Swasdikul, D. (1986). Reversible hyperpigmentation of skin and nails with white hair due to vitamin B12 deficiency. Archives of Dermatology, 122(8), 896–899. https://doi.org/10.1001/archderm.1986.01660200068018
Lessel, D., Oshima, J., & Kubisch, C. (2012). Werner syndrome: A prototypical form of segmental progeria. Medizinische Genetik, 24(4), 262–267. https://doi.org/10.1007/s11825-012-0360-x
He, G., et al. (2019). Diabetes mellitus coexisted with progeria: A case report of atypical Werner syndrome with novel LMNA mutations and literature review. Endocrine Journal, 66(11), 961–969. https://doi.org/10.1507/endocrj.ej19-0014
Chun, S. G., Shaeffer, D. S., & Bryant-Greenwood, P. K. (2011). The Werner’s syndrome RecQ helicase/exonuclease at the nexus of cancer and aging. Hawaii Medical Journal, 70(3), 52–56.
Muftuoglu, M., Oshima, J., Kobbe, C., Cheng, W. H., Leistritz, D. F., & Bohr, V. A. (2008). The clinical characteristics of Werner syndrome: Molecular and biochemical diagnosis. Human Genetics, 124(4), 369–377. https://doi.org/10.1007/s00439-008-0562-0
Paik, S. H., et al. (2018). Association between premature hair greying and metabolic risk factors: A cross-sectional study. Acta Dermato-Venereologica, 98(8), 748–752. https://doi.org/10.2340/00015555-2974
Erdoğan, T., et al. (2013). Premature hair whitening is an independent predictor of carotid intima-media thickness in young and middle-aged men. Internal Medicine, 52(1), 29–36. https://doi.org/10.2169/internalmedicine.52.7842
Schnohr, P., Lange, P., Nyboe, J., Appleyard, M., & Jensen, G. (1995). Gray hair, baldness, and wrinkles in relation to myocardial infarction. American Heart Journal, 130(5), 1003–1010. https://doi.org/10.1016/0002-8703(95)90201-5
Mahendiratta, S., et al. (2020). Premature graying of hair: Risk factors, co-morbid conditions, pharmacotherapy and reversal—A systematic review and meta-analysis. Dermatologic Therapy, 33(6), e13990. https://doi.org/10.1111/dth.13990
Zayed, A., Shahait, A., Ayoub, M., & Yousef, A. M. (2013). Smokers’ hair: Does smoking cause premature hair graying? Indian Dermatology Online Journal, 4(2), 90. https://doi.org/10.4103/2229-5178.110586
Sabharwal, R., et al. (2014). Association between use of tobacco and age on graying of hair. Nigerian Journal of Surgery, 20(2), 83. https://doi.org/10.4103/1117-6806.137308
Acer, E., Kaya Erdoğan, H., İğrek, A., Parlak, H., Saraçoğlu, Z. N., & Bilgin, M. (2019). Relationship between diet, atopy, family history, and premature hair graying. Journal of Cosmetic Dermatology, 18(2), 665–670. https://doi.org/10.1111/jocd.12840
El-Sheikh, A. M., Elfar, N. N., Mourad, H. A., & Hewedy, E. S. S. (2018). Relationship between trace elements and premature hair graying. International Journal of Trichology, 10(6), 278–283. https://doi.org/10.4103/ijt.ijt_8_18
Chakrabarty, S., Krishnappa, P. G., Gowda, D. G., & Hiremath, J. (2016). Factors associated with premature hair graying in a young Indian population. International Journal of Trichology, 8(1), 11–14. https://doi.org/10.4103/0974-7753.179384
Acer, E., Kaya Erdoğan, H., Kocatürk, E., Saracoğlu, Z. N., Alataş, Ö., & Bilgin, M. (2020). Evaluation of oxidative stress and psychoemotional status in premature hair graying. Journal of Cosmetic Dermatology, 19(12), 3403–3407. https://doi.org/10.1111/jocd.13428
Irie, M., Asami, S., Nagata, S., Miyata, M., & Kasai, H. (2001). Relationships between perceived workload, stress and oxidative DNA damage. International Archives of Occupational and Environmental Health, 74(2), 153–157. https://doi.org/10.1007/s004200000209
Treesirichod, A., Dhanasarnsombat, C., Thongsiri, N., Thapanakulsak, K., & Chanthanumatt, K. (2025). Exploring premature greying of hair: A cross-sectional study on prevalence, psychological effects, and contributing factors. Skin Appendage Disorders, 11(3), 215–220. https://doi.org/10.1159/000543572
Saad, M., et al. (2019). Impact of premature greying of hair on socio-cultural adjustment and self-esteem among medical undergraduates. Cureus, 11(7), e5083. https://doi.org/10.7759/cureus.5083
Herdiana, Y. (2025). Gray hair: From preventive to treatment. Clinical, Cosmetic and Investigational Dermatology, 18, 1475–1494. https://doi.org/10.2147/ccid.s526263
Choi, J. W., Lew, B. L., & Sim, W. Y. (2016). A case of premature hair graying treated with ferrous sulfate. Annals of Dermatology, 28(6), 775–776. https://doi.org/10.5021/ad.2016.28.6.775
Almeida Scalvino, S., et al. (2018). Efficacy of an agonist of α-MSH, the palmitoyl tetrapeptide-20, in hair pigmentation. International Journal of Cosmetic Science, 40(5), 516–524. https://doi.org/10.1111/ics.12494
Chavan, D. (2022). Reversal of premature hair graying treated with a topical formulation containing α-melanocyte-stimulating hormone agonist (Greyverse Solution 2%). International Journal of Trichology, 14(6), 207–209. https://doi.org/10.4103/ijt.ijt_85_22
Sakhiya, J., Sakhiya, D., Patel, M., & Daruwala, F. (2019). Case report on premature hair graying treated with Melitane 5% and oral hair supplements. Indian Journal of Pharmacology, 51(5), 346. https://doi.org/10.4103/ijp.ijp_166_19
Bellandi, S., Amato, L., Cipollini, E. M., Antiga, E., Brandini, L., & Fabbri, P. (2011). Repigmentation of hair after latanoprost therapy. Journal of the European Academy of Dermatology and Venereology, 25(12), 1485–1487. https://doi.org/10.1111/j.1468-3083.2010.03949.x
Seckin, D., & Yildiz, A. (2009). Repigmentation and curling of hair after acitretin therapy. Australasian Journal of Dermatology, 50(3), 214–216. https://doi.org/10.1111/j.1440-0960.2009.00542.x
Wand, M., Ritch, R., Isbey, E. K., & Zimmerman, T. J. (2001). Latanoprost and periocular skin color changes. Archives of Ophthalmology, 119(4), 614–615. https://doi.org/10.1001/archopht.119.4.614
Pavithran, K. (1986). Puvasol therapy in premature greying of hair. Indian Journal of Dermatology, Venereology and Leprology.
Zarafonetis, C. J. (1950). Darkening of gray hair during para-aminobenzoic acid therapy. Journal of Investigative Dermatology, 15(6), 399–401. https://doi.org/10.1038/jid.1950.121
Park, S. J., Ahn, G. R., Park, J. W., & Seo, S. J. (2021). The first case of ustekinumab-associated hair repigmentation and a proposed mechanism of action. Annals of Dermatology, 33(3), 300. https://doi.org/10.5021/ad.2021.33.3.300
Rivera, N., et al. (2017). Hair repigmentation during immunotherapy treatment with anti–PD-1 and anti–PD-L1 agents for lung cancer. JAMA Dermatology, 153(11), 1162–1165. https://doi.org/10.1001/jamadermatol.2017.2106
Manson, G., Marabelle, A., & Houot, R. (2018). Hair repigmentation with anti–PD-1 and anti–PD-L1 immunotherapy: A novel hypothesis. JAMA Dermatology, 154(1), 113. https://doi.org/10.1001/jamadermatol.2017.4421
Tintle, S. J., Dabade, T. S., Kalish, R. A., & Rosmarin, D. M. (2015). Repigmentation of hair following adalimumab therapy. Dermatology Online Journal, 21(6). https://doi.org/10.5070/d3216027818
Rongioletti, F., Mugheddu, C., & Murgia, S. (2018). Repigmentation and new growth of hairs after anti–interleukin-17 therapy with secukinumab for psoriasis. JAAD Case Reports, 4(5), 486. https://doi.org/10.1016/j.jdcr.2018.01.006
Kumar, A., Shamim, H., & Nagaraju, U. (2018). Premature graying of hair: Review with updates. International Journal of Trichology, 10(5), 198. https://doi.org/10.4103/ijt.ijt_47_18
da França, S. A., Dario, M. F., Esteves, V. B., Baby, A. R., & Velasco, M. V. R. (2015). Types of hair dye and their mechanisms of action. Cosmetics, 2(2), 110–126. https://doi.org/10.3390/cosmetics2020110
Cui, H., et al. (2022). Recent advancements in natural plant colorants used for hair dye applications: A review. Molecules, 27(22), 8062. https://doi.org/10.3390/molecules27228062
Rosenberg, A. M., et al. (2021). Quantitative mapping of human hair greying and reversal in relation to life stress. eLife, 10, e67437. https://doi.org/10.7554/elife.67437
Feng, Z., Qin, Y., & Jiang, G. (2023). Reversing gray hair: Inspiring the development of new therapies through research on hair pigmentation and repigmentation progress. International Journal of Biological Sciences, 19(14), 4588–4605. https://doi.org/10.7150/ijbs.86911
Copyright (c) 2025 Agata Wińska, Klaudia Zackiewicz, Michał Ziemba, Hanna Pietruszewska, Agata Ogórek, Paweł Liszka, Izabela Majchrzak, Hubert Bochenek

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

