NUTRITION AND ENDOTHELIAL FUNCTION: A REVIEW OF KETOGENIC AND PLANT-BASED DIETARY INTERVENTIONS
Abstract
Introduction: Endothelial function is crucial for maintaining vascular homeostasis by regulating vasomotor tone, inflammation, and immune responses. Impairment of endothelial function is an early indicator of cardiovascular disease (CVD). Given the increasing prevalence of CVD, identifying modifiable risk factors, including dietary patterns, is becoming increasingly important.
Aim of the study: This review compares the effects of ketogenic and plant-based diets on endothelial function, highlighting molecular mechanisms and clinical implications.
Methodology: Literature was searched in PubMed, Scopus, and Web of Science (June–September 2025) using the keywords endothelium, ketogenic diet, vegetarian diet, atherosclerosis, and oxidative stress. Studies published in English between 2010 and 2025 were analyzed.
Results: Ketogenic diets, although effective for weight loss, can lead to dehydration, micronutrient deficiencies, and increased endothelial inflammation due to low antioxidant intake. In contrast, plant-based diets are rich in fiber and antioxidants and low in trans fats, supporting endothelial integrity and reducing inflammation, though they may lack adequate EPA and DHA.
References
Ray, A., Maharana, K. Ch., Meenakshi, S., & Singh, S. (2023). Endothelial dysfunction and its relation in different disorders: Recent update. Health Sciences Review, 7, 100084. https://doi.org/10.1016/j.hsr.2023.100084
Kleeberg, A., Luft, T., Golkowski, D., & Purrucker, J. C. (2025). Endothelial dysfunction in acute ischemic stroke: A review. Journal of Neurology, 272, Article 143.
Chee, Y. J., Dalan, R., & Cheung, C. (2025). The interplay between immunity, inflammation and endothelial dysfunction. International Journal of Molecular Sciences, 26(4), 1708. https://doi.org/10.3390/ijms26041708
Krüger-Genge, A., Blocki, A., Franke, R.-P., & Jung, F. (2019). Vascular endothelial cell biology: An update. International Journal of Molecular Sciences, 20(18), 4411. https://doi.org/10.3390/ijms20184411
Wang, X., & He, B. (2025). Endothelial dysfunction: Molecular mechanisms and clinical implications. MedComm. https://doi.org/10.1002/mco2.651
Tamargo, I. A., Baek, K. I., Kim, Y., Park, C., & Jo, H. (2023). Flow-induced reprogramming of endothelial cells in atherosclerosis. Nature Reviews Cardiology, 20.
Naderi-Meshkin, H., & Wahyu Setyaningsih, W. A. (2025). Endothelial cell dysfunction: Onset, progression, and consequences. Frontiers in Bioscience, 29(6), 223. https://doi.org/10.31083/j.fbl2906223
Luca, A. C., David, S. G., David, A. G., Țarcă, V., Pădureț, I. A., Mîndru, D. E., Roșu, S. T., Roșu, E. V., Adumitrăchioaiei, H., Bernic, J., et al. (2023). Atherosclerosis from newborn to adult – Epidemiology, pathological aspects, and risk factors. Life, 13(10), 2056. https://doi.org/10.3390/life13102056
Sluiter, T. J., van Buul, J. D., Huveneers, S., Quax, P. H. A., & de Vries, M. R. (2021). Endothelial barrier function and leukocyte transmigration in atherosclerosis. Biomedicines, 9(4), 328. https://doi.org/10.3390/biomedicines9040328
Rafieian-Kopaei, M., Setorki, M., Doudi, M., Baradaran, A., & Nasri, H. (2014). Atherosclerosis: Process, indicators, risk factors and new hopes. International Journal of Preventive Medicine, 5(8), 927–946.
Grebe, A., Hoss, F., & Latz, E. (2018). NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circulation Research, 122(12), 1722–1740. https://doi.org/10.1161/CIRCRESAHA.118.311362
Mai, J., Virtue, A., Shen, J., Wang, H., & Yang, X. F. (2013). An evolving new paradigm: Endothelial cells—Conditional innate immune cells. Journal of Hematology & Oncology, 6, 61. https://doi.org/10.1186/1756-8722-6-61
Lorenzon, P., Vecile, E., Nardon, E., Ferrero, E., Harlan, J. M., Tedesco, F., & Dobrina, A. (1998). Endothelial cell E- and P-selectin and vascular cell adhesion molecule-1 function as signaling receptors. Journal of Cell Biology, 142(5), 1381–1391. https://doi.org/10.1083/jcb.142.5.1381
Peiseler, M., & Kubes, P. (2019). More friend than foe: The emerging role of neutrophils in tissue repair. Journal of Clinical Investigation, 129(7), 2629–2639. https://doi.org/10.1172/JCI124616
Williams, M. R., Azcutia, V., Newton, G., Alcaide, P., & Luscinskas, F. W. (2011). Emerging mechanisms of neutrophil recruitment across endothelium. Trends in Immunology, 32(10), 461–469. https://doi.org/10.1016/j.it.2011.06.009
Filippi, M. D. (2019). Neutrophil transendothelial migration: Updates and new perspectives. Blood, 133(20), 2149–2158. https://doi.org/10.1182/blood-2018-11-844605
Medrano-Bosch, M., Simón-Codina, B., Jiménez, W., Edelman, E. R., & Melgar-Lesmes, P. (2023). Monocyte-endothelial cell interactions in vascular and tissue remodeling. Frontiers in Immunology, 14, 1196033. https://doi.org/10.3389/fimmu.2023.1196033
Schierke, F., Wyrwoll, M. J., Wisdorf, M., Niedzielski, L., Maase, M., Ruck, T., Meuth, S. G., & Kusche-Vihrog, K. (2017). Nanomechanics of the endothelial glycocalyx contribute to Na+-induced vascular inflammation. Scientific Reports, 7, 46476. https://doi.org/10.1038/srep46476
Cooper, S., McDonald, K., Burkat, D., & Leask, R. L. (2017). Stenosis hemodynamics disrupt the endothelial cell glycocalyx by MMP activity creating a proinflammatory environment. Annals of Biomedical Engineering, 45(10), 2234–2243. https://doi.org/10.1007/s10439-017-1863-3
Santeramo, F. G., Carlucci, D., De Devitiis, B., Seccia, A., Stasi, A., Viscecchia, R., & Nardone, G. (2018). Emerging trends in European food, diets and food industry. Food Research International, 104, 39–47. https://doi.org/10.1016/j.foodres.2017.10.039
Qi, X., & Tester, R. (2025). The challenges associated with a ketogenic diet: A narrative review. Explor Foods Foodomics, 3, 101065. https://doi.org/10.37349/eff.2025.101065
Dyńka, D., Kowalcze, K., Charuta, A., & Paziewska, A. (2023). The ketogenic diet and cardiovascular diseases. Nutrients, 15(15), 3368. https://doi.org/10.3390/nu15153368
Miętkiewska, M., & Bogdański, P. (2022). Risk of alternative diet therapy for elderly patients: Groźenia wynikające ze stosowania diety ketogenicznej u osób starszych. Medycyna Ogólna i Nauki o Zdrowiu, 28(1), 15–19. https://doi.org/10.26444/monz/145972
Nasser, S., Vialichka, V., Biesiekierska, M., Balcerczyk, A., & Pirola, L. (2020). Effects of ketogenic diet and ketone bodies on the cardiovascular system: Concentration matters. World Journal of Diabetes, 11(12), 584–595. https://doi.org/10.4239/wjd.v11.i12.584
Drabińska, N. (2024). Current perspective about the effect of a ketogenic diet on oxidative stress – a review. Polish Journal of Food and Nutrition Sciences, 74(1), 92–105.
Crosby, L., Davis, B., Joshi, S., Jardine, M., Paul, J., Neola, M., & Barnard, N. D. (2021). Ketogenic diets and chronic disease: Weighing the benefits against the risks. Frontiers in Nutrition, 8, 702802. https://doi.org/10.3389/fnut.2021.702802
Han, Y.-M., Ramprasath, T., & Zou, M.-H. (2020). β-hydroxybutyrate and its metabolic effects on age-associated pathology. Experimental & Molecular Medicine, 52(4), 548–555. https://doi.org/10.1038/s12276-020-0415-z
Appleby, P. N., & Key, T. J. (2016). Long-term health of vegetarians and vegans. Proceedings of the Nutrition Society, 75(3), 287–293. https://doi.org/10.1017/S0029665116000131
Orlich, M. J., Jaceldo-Siegl, K., Sabaté, J., Fan, J., Singh, P. N., & Fraser, G. E. (2014). Patterns of food consumption among vegetarians and meat-eaters. British Journal of Nutrition, 112(10), 1644–1653. https://doi.org/10.1017/S0007114514001961
Saunders, A. V., Davis, B. C., & Garg, M. L. (2012). Omega-3 polyunsaturated fatty acids and vegetarian diets. Medical Journal of Australia, 1(3), 22–26. https://doi.org/10.5694/mjao11.10928
Satija, A., & Hu, F. B. (2018). Plant-based diets and cardiovascular health. Trends in Cardiovascular Medicine, 28(7), 437–441. https://doi.org/10.1016/j.tcm.2018.02.004
Schüpbach, R., Wegmüller, R., Berguerand, C., Bui, M., & Herter-Aeberli, I. (2017). Micronutrient status and intake in omnivores, vegetarians and vegans in Switzerland. European Journal of Nutrition, 56(1), 283–293. https://doi.org/10.1007/s00394-015-1079-7
Saunders, A. V., Davis, B. C., & Garg, M. L. (2012). Omega-3 polyunsaturated fatty acids and vegetarian diets. Medical Journal of Australia, 1(3), 22–26. https://doi.org/10.5694/mjao11.10928
van Winckel, M., vande Velde, S., de Bruyne, R., & van Biervliet, S. (2011). Clinical practice: Vegetarian infant and child nutrition. European Journal of Pediatrics, 170(12), 1489–1494. https://doi.org/10.1007/s00431-011-1500-y
Gibson, R. A., Muhlhausler, B., & Makrides, M. (2011). Conversion of linoleic acid and alpha-linolenic acid to long-chain polyunsaturated fatty acids (LCPUFAs), with a focus on pregnancy, lactation and the first 2 years of life. Maternal & Child Nutrition, 7(Suppl. 2), 17–26. https://doi.org/10.1111/j.1740-8709.2011.00352.x
Briggs, M. A., Petersen, K. S., & Kris-Etherton, P. M. (2017). Saturated fatty acids and cardiovascular disease: Replacements for saturated fat to reduce cardiovascular risk. Healthcare (Basel), 5(2), 29. https://doi.org/10.3390/healthcare5020029
Lopez-Garcia, E., Schulze, M. B., Meigs, J. B., Manson, J. E., Rifai, N., Stampfer, M. J., Willett, W. C., & Hu, F. B. (2005). Consumption of trans fatty acids is related to plasma biomarkers of inflammation and endothelial dysfunction. The Journal of Nutrition, 135(3), 562–566. https://doi.org/10.1093/jn/135.3.562
Tuso, P., Stoll, S. R., & Li, W. W. (2015). A plant-based diet, atherogenesis, and coronary artery disease prevention. The Permanente Journal, 19(1), 62–67. https://doi.org/10.7812/TPP/14-036
Copyright (c) 2025 Agata Ogorek, Dominika Ziolkowska, Julia Andrzejewska, Julianna Zielska, Eliza Gawron, Michał Ziemba, Paweł Liszka, Marcin Kapij, Klaudia Zackiewicz, Aleksandra Kaniak

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

