ENDOMETRIOSIS AND THE MICROBIOME: EMERGING APPLICATIONS OF ARTIFICIAL INTELLIGENCE IN WOMEN’S HEALTH

Keywords: Endometriosis, Gut Microbiota, Reproductive Tract, Artificial Intelligence, Biomarkers, Precision Medicine

Abstract

Introduction: Endometriosis, a chronic and estrogen-dependent inflammatory condition, affects millions worldwide, frequently causing pain, infertility, and a diminished quality of life. Delayed diagnosis remains a major challenge due to the lack of sensitive non-invasive biomarkers. Emerging evidence suggests that alterations in the gut and reproductive tract microbiomes contribute to disease pathophysiology through immune and hormonal dysregulation.

Purpose of the Work: This review aims to synthesize current knowledge on microbiome changes in endometriosis and explore the potential applications of artificial intelligence (AI) and machine learning (ML) for identifying microbiome-derived biomarkers and improving early diagnosis.

Material and Methods: A narrative review of peer-reviewed literature from 2015–2025 was conducted using PubMed, Scopus, and Web of Science. Keywords included “endometriosis,” “microbiome,” “artificial intelligence,” and “machine learning.” Studies were assessed for relevance, methodological quality, and contributions to understanding microbiome alterations and AI applications in endometriosis.

Results: Gut dysbiosis appears to influence estrogen metabolism, immune responses, and inflammation, while reproductive tract microbiota contribute to local immune modulation. AI and ML approaches, including Random Forest, Gradient Boosting, and logistic regression, have shown promise in predicting disease and identifying potential microbial biomarkers. Interventions such as probiotics, prebiotics, and fecal microbiota transplantation, coupled with multi-omics analyses, represent potential avenues for personalized treatment.

Conclusion: Integrating microbiome profiling with AI-driven models may enable non-invasive diagnosis, improved disease classification, and precision therapeutic strategies. Further large-scale, multicenter studies are needed to validate these approaches and support their translation into clinical practice.

References

Bień, A., Pokropska, A., Grzesik-Gąsior, J., Korżyńska-Piętas, M., Pieczykolan, A., Zarajczyk, M., Ali Pour, R., Frydrysiak-Brzozowska, A., & Rzońca, E. (2025). Quality of Life in Women with Endometriosis: The Importance of Socio-Demographic, Diagnostic-Therapeutic, and Psychological Factors. Journal of Clinical Medicine, 14(12), 4268. https://doi.org/10.3390/jcm14124268

Blanco, L. P., Salmeri, N., Temkin, S. M., Shanmugam, V. K., & Stratton, P. (2025). Endometriosis and autoimmunity. Autoimmunity Reviews, 24(4), 103752. https://doi.org/10.1016/j.autrev.2025.103752

Gałczyński, K., Jóźwik, M., Lewkowicz, D., Semczuk-Sikora, A., & Semczuk, A. (2019). Ovarian endometrioma - a possible finding in adolescent girls and young women: a mini-review. Journal of Ovarian Research, 12(1), 104. https://doi.org/10.1186/s13048-019-0582-5

Ottolina, J., Villanacci, R., D'Alessandro, S., He, X., Grisafi, G., Ferrari, S. M., & Candiani, M. (2024). Endometriosis and Adenomyosis: Modern Concepts of Their Clinical Outcomes, Treatment, and Management. Journal of clinical medicine, 13(14), 3996. https://doi.org/10.3390/jcm13143996

Mariadas, H., Chen, J.-H., & Chen, K.-H. (2025). The Molecular and Cellular Mechanisms of Endometriosis: From Basic Pathophysiology to Clinical Implications. International Journal of Molecular Sciences, 26(6), 2458. https://doi.org/10.3390/ijms26062458

Jones, G. L., Budds, K., Taylor, F., Musson, D., Raymer, J., Churchman, D., Kennedy, S. H., & Jenkinson, C. (2024). A systematic review to determine use of the Endometriosis Health Profiles to measure quality of life outcomes in women with endometriosis. Human Reproduction Update, 30(2), 186–214. https://doi.org/10.1093/humupd/dmad029

Swift, B., Taneri, B., Becker, C. M., Basarir, H., Naci, H., Missmer, S. A., Zondervan, K. T., & Rahmioglu, N. (2024). Prevalence, diagnostic delay, and economic burden of endometriosis and its impact on quality of life: Results from an Eastern Mediterranean population. European Journal of Public Health, 34(2), 244–252. https://doi.org/10.1093/eurpub/ckad216

Ellis, K., Munro, D., & Clarke, J. (2022). Endometriosis Is Undervalued: A call to Action. Frontiers in Global Women's Health, 3, 902371. https://doi.org/10.3389/fgwh.2022.902371

Sims, O. T., Gupta, J., Missmer, S. A., & Aninye, I. O. (2021). Stigma and endometriosis: A brief overview and recommendations to improve psychosocial well-being and diagnostic delay. International Journal of Environmental Research and Public Health, 18(15), 8210. https://doi.org/10.3390/ijerph18158210

Uzuner, C., Mak, J., El-Assaad, F., & Condous, G. (2023). The bidirectional relationship between endometriosis and microbiome. Frontiers in endocrinology, 14, 1110824. https://doi.org/10.3389/fendo.2023.1110824

Talwar, C., Davuluri, G. V. N., Kamal, A. H. M., Coarfa, C., Han, S. J., Veeraragavan, S., Parsawar, K., Putluri, N., Hoffman, K., Jimenez, P., Biest, S., & Kommagani, R. (2025). Identification of distinct stool metabolites in women with endometriosis for non-invasive diagnosis and potential for microbiota-based therapies. Med (New York, N.Y.), 6(2), 100517. https://doi.org/10.1016/j.medj.2024.09.006

Wu, I. W., Liao, Y. C., Tsai, T. H., Lin, C. H., Shen, Z. Q., Chan, Y. H., Tu, C. W., Chou, Y. J., Lo, C. J., Yeh, C. H., Chen, C. Y., Pan, H. C., Hsu, H. J., Lee, C. C., Cheng, M. L., Sheu, W. H., Lai, C. C., Sytwu, H. K., & Tsai, T. F. (2025). Machine-learning assisted discovery unveils novel interplay between gut microbiota and host metabolic disturbance in diabetic kidney disease. Gut Microbes, 17(1), 2473506. https://doi.org/10.1080/19490976.2025.2473506

Xiong, R., Aiken, E., Caldwell, R., Vernon, S. D., Kozhaya, L., Gunter, C., Bateman, L., Unutmaz, D., & Oh, J. (2025). AI-driven multi-omics modeling of myalgic encephalomyelitis/chronic fatigue syndrome. Nature Medicine, 31(9), 2991–3001. https://doi.org/10.1038/s41591-025-03788-3

Zhu, Y., Geng, S. Y., Chen, Y., Ru, Q. J., Zheng, Y., Jiang, N., Zhu, F. Y., & Zhang, Y. S. (2025). Machine learning algorithms reveal gut microbiota signatures associated with chronic hepatitis B-related hepatic fibrosis. World Journal of Gastroenterology, 31(16), 105985. https://doi.org/10.3748/wjg.v31.i16.105985

Moro, F., Giudice, M. T., Ciancia, M., Zace, D., Baldassari, G., Vagni, M., Tran, H. E., Scambia, G., & Testa, A. C. (2025). Application of artificial intelligence to ultrasound imaging for benign gynecological disorders: systematic review. Ultrasound in Obstetrics & Gynecology : The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology, 65(3), 295–302. https://doi.org/10.1002/uog.29171

Wang, M.-Y., Sang, L.-X., & Sun, S.-Y. (2024). Gut microbiota and female health. World Journal of Gastroenterology, 30(12), 1655–1662. https://doi.org/10.3748/wjg.v30.i12.1655

Yuanyue, L., Qian, H., Ling, L., Liufeng, Y., Jing, G., & Xiaomei, W. (2025). Impact of gut microbiota on endometriosis: Linking physical injury to mental health. Frontiers in Cellular and Infection Microbiology, 15, 1526063. https://doi.org/10.3389/fcimb.2025.1526063

Talwar, C., Singh, V., & Kommagani, R. (2022). The gut microbiota: A double-edged sword in endometriosis. Biology of Reproduction, 107(4), 881–901. https://doi.org/10.1093/biolre/ioac147

Qin, R., Tian, G., Liu, J., & Cao, L. (2022). The gut microbiota and endometriosis: From pathogenesis to diagnosis and treatment. Frontiers in Cellular and Infection Microbiology, 12, 1069557. https://doi.org/10.3389/fcimb.2022.1069557

Merrheim, J., Villegas, J., Van Wassenhove, J., Khansa, R., Berrih-Aknin, S., & Le Panse, R. (2020). Estrogen, estrogen-like molecules, and autoimmune diseases. Autoimmunity Reviews, 19(3), 102468. https://doi.org/10.1016/j.autrev.2020.102468

Beaud, D., Tailliez, P., & Anba-Mondoloni, J. (2005). Genetic characterization of the beta-glucuronidase enzyme from a human intestinal bacterium, Ruminococcus gnavus. Microbiology (Reading), 151(Pt 7), 2323–2330. https://doi.org/10.1099/mic.0.27712-0

Chadchan, S. B., Naik, S. K., Popli, P., Talwar, C., Putluri, S., Ambati, C. R., Lint, M. A., Kau, A. L., Stallings, C. L., & Kommagani, R. (2023). Gut microbiota and microbiota-derived metabolites promote endometriosis. Cell Death Discovery, 9(1), 28. https://doi.org/10.1038/s41420-023-01309-0

Qi, X., Yun, C., Pang, Y., & Qiao, J. (2021). The impact of the gut microbiota on the reproductive and metabolic endocrine system. Gut Microbes, 13(1), 1–21. https://doi.org/10.1080/19490976.2021.1894070

Yuanyue, L., Dimei, O., Ling, L., Dongyan, R., & Xiaomei, W. (2025). Association between endometriosis and gut microbiota: Systematic review and meta-analysis. Frontiers in Microbiology, 16, 1552134. https://doi.org/10.3389/fmicb.2025.1552134

Iang, I., Yong, P. J., Allaire, C., & Bedaiwy, M. A. (2021). Intricate connections between the microbiota and endometriosis. International Journal of Molecular Sciences, 22(11), 5644. https://doi.org/10.3390/ijms22115644

Fan, D., Wang, X., Shi, Z., Jiang, Y., Zheng, B., Xu, L., et al. (2023). Understanding endometriosis from an immunomicroenvironmental perspective. Chinese Medical Journal, 136(15), 1897–1909. https://doi.org/10.1097/CM9.0000000000002649

Kulkoyluoglu-Cotul, E., Arca, A., & Madak-Erdogan, Z. (2019). Crosstalk between estrogen signaling and breast cancer metabolism. Trends in Endocrinology & Metabolism, 30(1), 25–38. https://doi.org/10.1016/j.tem.2018.10.006

Zondervan, K. T., Becker, C. M., Koga, K., Missmer, S. A., Taylor, R. N., & Viganò, P. (2018). Endometriosis. Nature Reviews Disease Primers, 4, 9. https://doi.org/10.1038/s41572-018-0008-5

Kwon, O., Lee, S., Kim, J.-H., Kim, H., & Lee, S.-W. (2015). Altered gut microbiota composition in Rag1-deficient mice contributes to modulating homeostasis of hematopoietic stem and progenitor cells. Immune Network, 15(5), 252–259

Hufnagel, D., Li, F., Cosar, E., Krikun, G., & Taylor, H. (2015). The role of stem cells in the etiology and pathophysiology of endometriosis. Seminars in Reproductive Medicine, 33(5), 333–340

Chadchan, S. B., Cheng, M., Parnell, L. A., Yin, Y., Schriefer, A., Mysorekar, I. U., et al. (2019). Antibiotic therapy with metronidazole reduces endometriosis disease progression in mice: A potential role for gut microbiota. Human Reproduction, 34(6), 1106–1116. https://doi.org/10.1093/humrep/dez041

Li, Q., Yuan, M., Jiao, X., Ji, M., Huang, Y., Li, J., et al. (2021). Metabolite profiles in the peritoneal cavity of endometriosis patients and mouse models. Reproductive BioMedicine Online, 43, 810–819. https://doi.org/10.1016/j.rbmo.2021.06.029

Bailey, M. T., & Coe, C. L. (2002). Endometriosis is associated with an altered profile of intestinal microflora in female rhesus monkeys. Human Reproduction, 17(7), 1704–1708. https://doi.org/10.1093/humrep/17.7.1704

Huang, L., Liu, B., Liu, Z., Feng, W., Liu, M., Wang, Y., et al. (2021). Gut microbiota exceeds cervical microbiota for early diagnosis of endometriosis. Frontiers in Cellular and Infection Microbiology, 11, 788836. https://doi.org/10.3389/fcimb.2021.788836

Jimenez, N., Norton, T., Diadala, G., Bell, E., Valenti, M., Farland, L. V., et al. (2024). Vaginal and rectal microbiome contribute to genital inflammation in chronic pelvic pain. BMC Medicine, 22(1), 283. https://doi.org/10.1186/s12916-024-03500-1

Li, Y., Zhou, Z., Liang, X., Ding, J., He, Y., Sun, S., et al. (2024). Gut microbiota disorder contributes to the production of IL-17A that exerts chemotaxis via binding to IL-17RA in endometriosis. Journal of Inflammation Research, 17, 4199–4217. https://doi.org/10.2147/JIR.S458928

Svensson, A., Brunkwall, L., Roth, B., Orho-Melander, M., & Ohlsson, B. (2021). Associations between endometriosis and gut microbiota. Reproductive Sciences, 28(9), 2367–2377. https://doi.org/10.1007/s43032-021-00506-5

Highlander, S. K., Flores, R., Shi, J., et al. (2012). Association of fecal microbial diversity and taxonomy with selected enzymatic functions. PLoS ONE, 7(6), e39745. https://doi.org/10.1371/journal.pone.0039745

Liu, Z., Chen, P., Luo, L., Liu, Q., Shi, H., & Yang, X. (2023). Causal effects of gut microbiome on endometriosis: A two-sample Mendelian randomization study. BMC Women's Health, 23, 637. https://doi.org/10.1186/s12905-023-02742-0

Tang, Y., Yang, J., Hang, F., Huang, H., & Jiang, L. (2024). Unraveling the relationship between gut microbiota and site-specific endometriosis: A Mendelian randomization analysis. Frontiers in Microbiology, 15, 1363080. https://doi.org/10.3389/fmicb.2024.1363080

MacSharry, J., Kovács, Z., Xie, Y., et al. (2024). Endometriosis specific vaginal microbiota links to urine and serum N-glycome. Scientific Reports, 14, 25372. https://doi.org/10.1038/s41598-024-76125-2

Muraoka, A., et al. (2023). Fusobacterium infection facilitates the development of endometriosis through the phenotypic transition of endometrial fibroblasts. Science Translational Medicine, 15, eadd1531. https://doi.org/10.1126/scitranslmed.add1531

Salliss, M. E., Farland, L. V., Mahnert, N. D., & Herbst-Kralovetz, M. M. (2021). The role of gut and genital microbiota and the estrobolome in endometriosis, infertility and chronic pelvic pain. Human Reproduction Update, 28(1), 92–131. https://doi.org/10.1093/humupd/dmab035

Agarwal, S. K., Chapron, C., Giudice, L. C., Laufer, M. R., Leyland, N., Missmer, S. A., et al. (2019). Clinical diagnosis of endometriosis: A call to action. American Journal of Obstetrics and Gynecology, 220(4), 354.e1–354.e12. https://doi.org/10.1016/j.ajog.2018.12.039

Ni, Z., Ding, J., Zhao, Q., Cheng, W., Yu, J., Zhou, L., et al. (2021). Alpha-linolenic acid regulates the gut microbiota and the inflammatory environment in a mouse model of endometriosis. American Journal of Reproductive Immunology, 86(4), e13471. https://doi.org/10.1111/aji.13471

Chadchan, S. B., Popli, P., Ambati, C. R., Tycksen, E., Han, S. J., Bulun, S. E., … & Shankar, S. (2021). Gut microbiota-derived short-chain fatty acids protect against the progression of endometriosis. Life Science Alliance, 4(1), e202101224. https://doi.org/10.26508/lsa.202101224

Shan, J., Ni, Z., Cheng, W., Zhou, L., Zhai, D., Sun, S., et al. (2021). Gut microbiota imbalance and its correlations with hormone and inflammatory factors in patients with stage 3/4 endometriosis. Archives of Gynecology and Obstetrics, 304, 1363–1373. https://doi.org/10.1007/s00404-021-06057-z

Reis, F. M. D., Monteiro, C. de S., & Carneiro, M. M. (2017). Biomarkers of pelvic endometriosis. Revista Brasileira de Ginecologia e Obstetrícia, 39(2), 91–93. https://doi.org/10.1055/s-0037-1601398

Dungate, B., Tucker, D. R., Goodwin, E., & Yong, P. J. (2024). Assessing the utility of artificial intelligence in endometriosis: Promises and pitfalls. Women's health (London, England), 20, 17455057241248121. https://doi.org/10.1177/17455057241248121

Cetera, G. E., Tozzi, A. E., Chiappa, V., Castiglioni, I., Merli, C. E. M., & Vercellini, P. (2024). Artificial intelligence in the management of women with endometriosis and adenomyosis: Can machines ever be worse than humans? Journal of Clinical Medicine, 13, 2950. https://doi.org/10.3390/jcm13102950

Torraco, A., Di Nicolantonio, S., Cardisciani, M., Ortu, E., Pietropaoli, D., Altamura, S., & Del Pinto, R. (2025). Meta-analysis of 16S rRNA sequencing reveals altered fecal but not vaginal microbial composition and function in women with endometriosis. Medicina, 61(5), 888. https://doi.org/10.3390/medicina61050888

Perrotta, A. R., Borrelli, G. M., Martins, C. O., Kallas, E. G., Sanabani, S. S., Griffith, L. G., Alm, E. J., & Abrao, M. S. (2020). The vaginal microbiome as a tool to predict rASRM stage of disease in endometriosis: A pilot study. Reproductive Sciences, 27(4), 1064–1073. https://doi.org/10.1007/s43032-019-00113-5

Caballero, P., Gonzalez-Abril, L., Ortega, J. A., & Simon-Soro, Á. (2024). Data Mining Techniques for Endometriosis Detection in a Data-Scarce Medical Dataset. Algorithms, 17(3), 108. https://doi.org/10.3390/a17030108

Collie, B., Troisi, J., Lombardi, M., Symes, S., & Richards, S. (2025). The Current Applications of Metabolomics in Understanding Endometriosis: A Systematic Review. Metabolites, 15(1), 50. https://doi.org/10.3390/metabo15010050

Li, C., Xu, X., Zhao, X., & Du, B. (2025). The inconsistent pathogenesis of endometriosis and adenomyosis: insights from endometrial metabolome and microbiome. mSystems, 10(5), e0020225. https://doi.org/10.1128/msystems.00202-25

Kalopedis, E. A., Zorgani, A., Zinovkin, D. A., Barri, M., Wood, C. D., & Pranjol, M. Z. I. (2025). Leveraging the role of the microbiome in endometriosis: Novel non-invasive and therapeutic approaches. Frontiers in Immunology, 16, 1631522. https://doi.org/10.3389/fimmu.2025.1631522

Views:

33

Downloads:

16

Published
2025-12-19
Citations
How to Cite
Urszula Borucińska, Hanna Pietruszewska, Oliwia Sędziak, Natalia Kruszewska, Sabina Skrzynecka, & Karol Perski. (2025). ENDOMETRIOSIS AND THE MICROBIOME: EMERGING APPLICATIONS OF ARTIFICIAL INTELLIGENCE IN WOMEN’S HEALTH. International Journal of Innovative Technologies in Social Science, 4(4(48). https://doi.org/10.31435/ijitss.4(48).2025.4264

Most read articles by the same author(s)