FROM LOW-FIBER TO NO-FIBER: A SYSTEMATIC REVIEW COMPARING THE GUT MICROBIOME AND INFLAMMATORY IMPACTS OF KETOGENIC VS. CARNIVORE DIETS
Abstract
Background: The ketogenic diet (KD) and the emerging carnivore diet (CD) represent two extremes of carbohydrate restriction, with distinct implications for gut microbiome ecology and inflammation. Although both regimens minimize dietary fiber intake, their comparative effects on microbial composition and immune modulation remain unclear.
Objectives: This systematic review aimed to synthesize current evidence on the impact of ketogenic and carnivore diets on gut microbiota structure, microbial metabolites, and inflammatory outcomes in human and animal studies.
Methods: A comprehensive search of PubMed, Scopus, and Web of Science databases was conducted according to PRISMA guidelines, including studies published between 2014 and 2025. Eligible studies evaluated microbiome composition or inflammatory biomarkers following adherence to KD or CD. Data were extracted and compared narratively due to heterogeneity in study designs.
Results: Across reviewed studies, ketogenic diets consistently reduced saccharolytic taxa (e.g., Bifidobacterium, Roseburia) and short-chain fatty acid production, yet in some cases improved systemic inflammation through β-hydroxybutyrate–mediated mechanisms. In contrast, carnivore diets led to further reductions in microbial diversity, enrichment of bile-tolerant taxa, and elevated proteolytic fermentation byproducts linked to intestinal barrier dysfunction. Evidence for long-term adaptation or recovery remains limited.
Conclusions: Both KD and CD reshape the gut ecosystem toward reduced fermentation capacity and altered inflammatory signaling. While ketogenic interventions may confer transient metabolic benefits, the carnivore diet represents an extreme model of fiber deprivation with uncertain safety. Controlled longitudinal trials are urgently needed to define the long-term microbiome and immune consequences of these ultra-low-fiber regimens.
References
Güzey Akansel, M., Baş, M., Gençalp, C., Kahrıman, M., Şahin, E., Öztürk, H., Gür, G., & Gür, C. (2024). Effects of the ketogenic diet on microbiota composition and short-chain fatty acids in women with overweight/obesity. Nutrients, 16(24), 4374. https://doi.org/10.3390/nu16244374
Karačić, A., Dikarlo, P., Dorst, I., Renko, I., & Liberati Pršo, A.-M. (2024). The gut microbiome without any plant food? A case study on an individual following a carnivore diet. Medical Anthropology & Health, 2(1). https://doi.org/10.1530/MAH-24-0006
Fu, J., Zheng, Y., Gao, Y., & Xu, W. (2022). Dietary fiber intake and gut microbiota in human health. Microorganisms, 10(12), 2507. https://doi.org/10.3390/microorganisms10122507
Shen, S., Prame Kumar, K., Wen, S. W., Shim, R., Wanrooy, B. J., Stanley, D., Moore, R. J., Van, T. T. H., Robert, R., Hickey, M. J., & Wong, C. H. Y. (2021). Deficiency of dietary fiber modulates gut microbiota composition, neutrophil recruitment and worsens experimental colitis. Frontiers in Immunology, 12, 619366. https://doi.org/10.3389/fimmu.2021.619366
Li, W., Gong, M., Wang, Z., Pan, H., Li, Y., & Zhang, C. (2024). The gut microbiota changed by ketogenic diets contribute to glucose intolerance rather than lipid accumulation. Frontiers in Endocrinology, 15, 1446287. https://doi.org/10.3389/fendo.2024.1446287
Norwitz, N. G., & Soto-Mota, A. (2024). Case report: Carnivore-ketogenic diet for the treatment of inflammatory bowel disease: a case series of 10 patients. Frontiers in Nutrition, 11, 1467475. https://doi.org/10.3389/fnut.2024.1467475
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71
Rew, L., Harris, M. D., & Goldie, J. (2022). The ketogenic diet: Its impact on human gut microbiota and potential consequent health outcomes: A systematic literature review. Gastroenterology and Hepatology From Bed to Bench, 15(4), 326–342. https://doi.org/10.22037/ghfbb.v15i4.2600
Goedeke, S., Murphy, T., Rush, A., & Zinn, C. (2024). Assessing the nutrient composition of a carnivore diet: A case study model. Nutrients, 17(1), 140. https://doi.org/10.3390/nu17010140
Wang, Y., Uffelman, C. N., Bergia, R. E., Clark, C. M., Reed, J. B., Cross, T. L., Lindemann, S. R., Tang, M., & Campbell, W. W. (2023). Meat consumption and gut microbiota: A scoping review of literature and systematic review of randomized controlled trials in adults. Advances in Nutrition (Bethesda, Md.), 14(2), 215–237. https://doi.org/10.1016/j.advnut.2022.10.005
Larsson, S. C., Ericson, U., Dekkers, K. F., Arage, G., Rašo, L. M., Sayols-Baixeras, S., Hammar, U., Baldanzi, G., Nguyen, D., Nielsen, H. B., Holm, J. B., Risérus, U., Michaëlsson, K., Sundström, J., Smith, J. G., Engström, G., Ärnlöv, J., Orho-Melander, M., Fall, T., & Ahmad, S. (2025). Meat intake in relation to composition and function of gut microbiota. Clinical Nutrition, 45, 124–133. https://doi.org/10.1016/j.clnu.2024.12.034
Olson, C. A., Vuong, H. E., Yano, J. M., Liang, Q. Y., Nusbaum, D. J., & Hsiao, E. Y. (2018). The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell, 173(7), 1728–1741.e13. https://doi.org/10.1016/j.cell.2018.04.027
David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., Ling, A. V., Devlin, A. S., Varma, Y., Fischbach, M. A., Biddinger, S. B., Dutton, R. J., & Turnbaugh, P. J. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–563. https://doi.org/10.1038/nature12820
Russell, W. R., Hoyles, L., Flint, H. J., & Dumas, M.-E. (2013). Colonic bacterial metabolites and human health. Current Opinion in Microbiology, 16(3), 246–254. https://doi.org/10.1016/j.mib.2013.07.002
Sheflin, A. M., Melby, C. L., Carbonero, F., & Weir, T. L. (2017). Linking dietary patterns with gut microbial composition and function. Gut Microbes, 8(2), 113–129. https://doi.org/10.1080/19490976.2016.1270809
Parada Venegas, D., De la Fuente, M. K., Landskron, G., González, M. J., Quera, R., Dijkstra, G., Harmsen, H. J. M., Faber, K. N., & Hermoso, M. A. (2019). Short chain fatty acids (SCFAs)—mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Frontiers in Immunology, 10, 277. https://doi.org/10.3389/fimmu.2019.00277
Desai, M. S., Seekatz, A. M., Koropatkin, N. M., Kamada, N., Hickey, C. A., Wolter, M., Pudlo, N. A., Kitamoto, S., Terrapon, N., Muller, A., Young, V. B., Henrissat, B., Wilmes, P., Stappenbeck, T. S., Núñez, G., & Martens, E. C. (2016). A dietary fiber–deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell, 167(5), 1339–1353.e21. https://doi.org/10.1016/j.cell.2016.10.043
Youm, Y.-H., Nguyen, K. Y., Grant, R. W., Goldberg, E. L., Bodogai, M., Kim, D., D’Agostino, D., Planavsky, N., Lupfer, C., Kanneganti, T.-D., Kang, S., Horvath, T. L., Fahmy, T. M., Crawford, P. A., Biragyn, A., & Dixit, V. D. (2015). The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease. Nature Medicine, 21(3), 263–269. https://doi.org/10.1038/nm.3804
deCampo, D. M., & Kossoff, E. H. (2019). Ketogenic dietary therapies for epilepsy and beyond. Current Opinion in Clinical Nutrition and Metabolic Care, 22(4), 264–268. https://doi.org/10.1097/MCO.0000000000000565
Copyright (c) 2025 Karol Demel, Filip Kowal, Justyna Talaska, Adrian Dyląg, Jakub Król, Maciej Łydka, Justyna Lewandowska, Monika Dziedzic, Julia Holzer, Natalia Libudzic

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

