APPLYING GEOGRAPHIC INFORMATION SYSTEMS (GIS) AND IOT SENSOR DATA TO MODEL THE IMPACT OF AIR POLLUTION ON THE INCIDENCE OF RESPIRATORY DISEASES

Keywords: Air Pollution, GIS, IoT Sensors, Respiratory Diseases, Spatial Analysis, Public Health, Geographically Weighted Regression (GWR)

Abstract

Ambient air pollution is a major global health threat, yet modeling its localized impact on respiratory diseases is hindered by sparse monitoring networks, leading to exposure misclassification. This paper outlines a high-resolution framework integrating Geographic Information Systems (GIS) and Internet of Things (IoT) sensor data to overcome these limitations. The methodology involves using calibrated, dense IoT networks to capture real-time (PM2.5) data, which is then integrated with health records. GIS techniques, including Kriging and Geographically Weighted Regression (GWR), are used to create continuous exposure surfaces and analyze spatially varying health relationships. The anticipated results include the identification of pollution hotspots and disease clusters, with the key finding being the quantification of spatial heterogeneity. This synergistic approach provides a powerful evidence base for targeted public health interventions and addressing environmental inequities.

Background: Air pollution, particularly (PM2.5), (NO2), and (O3), is a leading cause of global morbidity and mortality, strongly linked to respiratory diseases like asthma and COPD. Accurately assessing population exposure is a significant challenge. Traditional air quality monitoring relies on sparse, fixed regulatory stations. This method fails to capture the complex, micro-environmental variations in pollutant concentrations, leading to a "spatial data gap." This gap results in exposure misclassification in epidemiological studies, potentially underestimating the true health risks for vulnerable populations living in localized "hotspots."

Purpose of Research: The primary aim of this paper is to outline and propose a high-resolution geospatial modeling framework. This framework integrates real-time, high-granularity data from dense, low-cost Internet of Things (IoT) sensor networks with advanced Geographic Information Systems (GIS) analysis. The goal is to more accurately quantify the localized, spatially varying relationship between air pollution exposure and the incidence of respiratory diseases, moving beyond traditional, spatially-uniform risk assessments.

References

Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., … Forouzanfar, M. H. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. The Lancet, 389(10082), 1907–1918. https://doi.org/10.1016/S0140-6736(17)30505-6

Manisalidis, I., Stavropoulou, E., Stavropoulos, A., & Bezirtzoglou, E. (2020). Environmental and health impacts of air pollution: A review. Frontiers in Public Health, 8, 14. https://doi.org/10.3389/fpubh.2020.00014

Khreis, H., de Hoogh, K., & Nieuwenhuijsen, M. J. (2018). Full-chain health impact assessment of traffic-related air pollution and childhood asthma. Environment International, 114, 365–375. https://doi.org/10.1016/j.envint.2018.03.008

World Health Organization. (2021). WHO global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. https://apps.who.int/iris/handle/10665/345329

Pozzer, A., Anenberg, S. C., Dey, S., Haines, A., Lelieveld, J., & Chowdhury, S. (2023). Mortality attributable to ambient air pollution: A review of global estimates. GeoHealth, 7(1), e2022GH000711. https://doi.org/10.1029/2022GH000711

de Bont, J., Jaganathan, S., Dahlquist, M., Persson, Å., Stafoggia, M., & Ljungman, P. (2022). Ambient air pollution and cardiovascular diseases: An umbrella review of systematic reviews and meta-analyses. Journal of Internal Medicine, 291(6), 779–800. https://doi.org/10.1111/joim.13467

Kumar, P., Morawska, L., Martani, C., Biskos, G., Neophytou, M., Di Sabatino, S., Bell, M., Norford, L., & Britter, R. (2015). The rise of low-cost sensing for managing air pollution in cities. Environment International, 75, 199–205. https://doi.org/10.1016/j.envint.2014.11.019

Rai, A. C., Kumar, P., Pilla, F., Skouloudis, A. N., Di Sabatino, S., Ratti, C., Yasar, A., & Morawska, L. (2017). End-user perspective of low-cost sensors for outdoor air pollution monitoring. Science of the Total Environment, 607, 691–705. https://doi.org/10.1016/j.scitotenv.2017.06.266

de Souza, J. D. C., de Souza, J. B., de Castro, C. A. M., Gioda, A., & de Farias, I. P. (2022). A systematic review of the use of low-cost sensors for air quality monitoring: A guide for the implementation of a sensor-based network. Environmental Science and Pollution Research, 29(21), 30979–30999. https://doi.org/10.1007/s11356-022-19280-z

Boogaard, H., Patton, A. P., Atkinson, R. W., Brook, J. R., Chang, H. H., Crouse, D. L., Fussell, J. C., Hoek, G., Hoffmann, B., Kappeler, R., Kutlar Joss, M., Ondras, M., Sagiv, S. K., Samoli, E., Shaikh, R., Smargiassi, A., Szpiro, A. A., Van Vliet, E. D. S., Vienneau, D., Weuve, J., … Forastiere, F. (2022). Long-term exposure to traffic-related air pollution and selected health outcomes: A systematic review and meta-analysis. Environment International, 164, 107262. https://doi.org/10.1016/j.envint.2022.107262

Karagulian, F., Barbiere, M., Kotsev, A., Spinelle, L., Gerboles, M., Lagler, F., Redon, N., & Crunaire, S. (2019). Review of the performance of low-cost sensors for air quality monitoring. Atmosphere, 10(9), 506. https://doi.org/10.3390/atmos10090506

Zhang, J., Bai, L., Li, N., Wang, Y., Lv, Y., Shi, Y., Yang, C., & Xu, C. (2025). Low-cost particulate matter mass sensors: Review of the status, challenges, and opportunities for single-instrument and network calibration. ACS Sensors, 10(5), 3207–3221. https://doi.org/10.1021/acssensors.4c03293

Kelly, F. J., & Fussell, J. C. (2015). Air pollution and public health: Emerging hazards and improved understanding of risk. Environmental Geochemistry and Health, 37(4), 631–649. https://doi.org/10.1007/s10653-015-9720-1

Di, Q., Wang, Y., Zanobetti, A., Wang, Y., Koutrakis, P., Choirat, C., Dominici, F., & Schwartz, J. D. (2017). Air pollution and mortality in the Medicare population. New England Journal of Medicine, 376(26), 2513–2522. https://doi.org/10.1056/NEJMoa1702747

Orellano, P., Quaranta, N., Reynoso, J., Balbi, B., & Vasquez, J. (2017). Effect of outdoor air pollution on asthma exacerbations in children and adults: Systematic review and multilevel meta-analysis. PLOS ONE, 12(3), e0174050. https://doi.org/10.1371/journal.pone.0174050

Schneider, P., Castell, N., Vogt, M., Dauge, F. R., Lahoz, W. A., & Bartonova, A. (2017). Mapping urban air quality in near real-time using observations from low-cost sensors and model data. Environment International, 106, 234–247. https://doi.org/10.1016/j.envint.2017.05.005

McDuffie, E., Martin, R., Yin, H., & Brauer, M. (2021). Global burden of disease from major air pollution sources (GBD MAPS): A global approach (Research Report No. 210). Health Effects Institute.

Tibuakuu, M., Michos, E. D., Navas-Acien, A., & Jones, M. R. (2018). Air pollution and cardiovascular disease: A focus on vulnerable populations worldwide. Current Epidemiology Reports, 5(4), 370–378. https://doi.org/10.1007/s40471-018-0166-8

Su, J. G., Cárdenas, A., Jerrett, M., Reich, B. J., D’Souza, R., Benmarhnia, T., & Balmes, J. R. (2024). Examining air pollution exposure dynamics in disadvantaged communities through high-resolution mapping. Science Advances, 10(15), eadm9986. https://doi.org/10.1126/sciadv.adm9986

Khreis, H., Kelly, C., Tate, J., Parslow, R., Lucas, K., & Nieuwenhuijsen, M. (2017). Exposure to traffic-related air pollution and risk of development of childhood asthma: A systematic review and meta-analysis. Environment International, 100, 1–31. https://doi.org/10.1016/j.envint.2016.11.012

Published
2025-12-26
Citations
How to Cite
Filip Kowal, Kamila Krzyżanowska, Michał Pietrucha, Karol Demel, Justyna Talaska, Adrian Dyląg, Jakub Król, Maciej Łydka, Justyna Lewandowska, & Monika Dziedzic. (2025). APPLYING GEOGRAPHIC INFORMATION SYSTEMS (GIS) AND IOT SENSOR DATA TO MODEL THE IMPACT OF AIR POLLUTION ON THE INCIDENCE OF RESPIRATORY DISEASES. International Journal of Innovative Technologies in Social Science, 4(4(48). https://doi.org/10.31435/ijitss.4(48).2025.4159

Most read articles by the same author(s)