GENETICS AND SPORT PERFORMANCE: ARE WE READY FOR GENOTYPE-BASED TRAINING?

Keywords: Exercise Genetics, Personalized Training, Athletic Performance, Elite Athletes, ACTN3 Gene, ACE Gene

Abstract

Background: Sports genomics explores the genetic basis of athletic ability and trainability, gaining growing scientific and public interest. This has led to a surge in direct-to-consumer (DTC) genetic tests claiming to offer personalized training programs based on individual genotypes. However, a gap remains between these marketing claims and solid scientific validation.

Purpose of Research: This systematic review evaluates the strength of association between specific genetic polymorphisms and athletic performance, and examines the scientific support for genotype-based training.

Materials and Methods: Relevant literature was sourced from the PubMed database using keywords such as “genetics”, “athletic performance”, “genotype”, and “personalized training”.

Results: Several studies reported associations between genetic variants and performance traits—most notably, ACTN3 with power and ACE with endurance. However, the predictive value for individuals remains limited. There is also a lack of high-quality randomized controlled trials (RCTs) testing genotype-based training programs. Existing trials often yield conflicting or inconclusive results.

Conclusions: Current scientific evidence does not support the widespread adoption of genotype-based training. Although certain genes influence physical potential, athletic performance is a complex, polygenic trait shaped significantly by environmental and lifestyle factors. DTC genetic tests currently lack the robust validation required to guide individualized training protocols.

References

Ahmetov, I. I., Hall, E. C. R., Semenova, E. A., Pranckevičienė, E., & Ginevičienė, V. (2022). Advances in sports genomics. Advances in Clinical Chemistry, 107, 215–263. https://doi.org/10.1016/bs.acc.2021.07.004

Ahmetov, I. I., Egorova, E. S., Gabdrakhmanova, L. I., & Fedotovskaya, O. N. (2016). Genes and athletic performance: An update. Medicine and Sport Science, 61, 41–54. https://doi.org/10.1159/000445240

Pitsiladis, Y., Wang, G., Wolfarth, B., Scott, R., Mooses, H., Posthumus, M., Faulkner, B., Göring, H. H., de Moor, M. H. M., Ahmetov, I. I., Boulay, M. R., Fuku, N., Gronert, S., Guth, L. M., Hanel, P., Hoffmann, G. F., Hopkins, W. G., Iaia, F. M., Kappas, K. P., ... Williams, A. (2013). Genomics of elite sporting performance: What little we know and necessary advances. British Journal of Sports Medicine, 47(9), 550–555. https://doi.org/10.1136/bjsports-2013-092400

Varillas-Delgado, D., Del Coso, J., Gutiérrez-Hellín, J., Muñoz, A., & Ruiz, M. A. (2022). Genetics and sports performance: The present and future in the identification of talent for sports based on DNA testing. European Journal of Applied Physiology, 122(8), 1811–1830. https://doi.org/10.1007/s00421-022-04945-z

Webborn, N., Williams, A., McNamee, M., Bouchard, C., Pitsiladis, Y., Ahmetov, I., Ashley, E., Byrne, N., Camporesi, S., Collins, M., Erb, M., Fuku, N., Garton, F. C., Gornall, J., Guth, L. M., Hilton-Jones, D., Hoffmann, G. F., L Melegh, B., Maughan, R. J., ... Vianna, J. (2015). Direct-to-consumer genetic testing for predicting sports performance and talent identification: Consensus statement. British Journal of Sports Medicine, 49(23), 1486–1491. https://doi.org/10.1136/bjsports-2015-095343

Maciejewska-Skrendo, A., Cięszczyk, P., Chycki, J., Sawczuk, M., & Smółka, W. (2019). Genetic markers associated with power athlete status. Journal of Human Kinetics, 68, 17–36. https://doi.org/10.2478/hukin-2019-0053

MacArthur, D. G., & North, K. N. (2007). ACTN3: A genetic influence on muscle function and athletic performance. Exercise and Sport Sciences Reviews, 35(1), 30–34. https://doi.org/10.1097/JES.0b013e31802d8874

Lee, F. X., Houweling, P. J., North, K. N., & Quinlan, K. G. (2016). How does α-actinin-3 deficiency alter muscle function? Mechanistic insights into ACTN3, the 'gene for speed'. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1863(4), 686–693. https://doi.org/10.1016/j.bbamcr.2016.01.013

Garton, F. C., & North, K. N. (2016). The effect of heterozygosity for the ACTN3 null allele on human muscle performance. Medicine and Science in Sports and Exercise, 48(3), 509–520. https://doi.org/10.1249/MSS.0000000000000784

Silva, A. S. E., Dos Santos, J. H., Silva, J. A. O., Barbosa, C. G. R., Ribeiro, A. G. S. V., & de Oliveira, J. J. (2025). Impact of ACTN3 R577X polymorphism on muscle damage susceptibility following aerobic or strength exercises: A systematic review. International Journal of Preventive Medicine, 16, 32. https://doi.org/10.4103/ijpvm.ijpvm_268_24

Valdivieso, P., Vaughan, D., Laczko, E., Al Saadi, A., Al Sayari, A., Kadi, F., & Al-Khelaifi, F. (2017). The metabolic response of skeletal muscle to endurance exercise is modified by the ACE-I/D gene polymorphism and training state. Frontiers in Physiology, 8, 993. https://doi.org/10.3389/fphys.2017.00993

Collins, M., Xenophontos, S. L., Cariolou, M. A., Mouzouridou, E., Malas, S., Bailey, M., & Wolmarans, M. (2004). The ACE gene and endurance performance during the South African Ironman Triathlons. Medicine and Science in Sports and Exercise, 36(8), 1314–1320. https://doi.org/10.1249/01.mss.0000135779.41475.42

Tsianos, G., Sanders, J., Dhamrait, S., Humphries, S., Grant, S., & Montgomery, H. (2004). The ACE gene insertion/deletion polymorphism and elite endurance swimming. European Journal of Applied Physiology, 92(3), 360–362. https://doi.org/10.1007/s00421-004-1120-7

Chae, J. H., Eom, S. H., Lee, S. K., Jung, J. H., & Kim, C. H. (2024). Association between complex ACTN3 and ACE gene polymorphisms and elite endurance sports in Koreans: A case-control study. Genes, 15(9), 1110. https://doi.org/10.3390/genes15091110

Pabalan, N., Tharabenjasin, P., Phababpha, S., & Jarjanazi, H. (2018). Association of COL5A1 gene polymorphisms and risk of tendon-ligament injuries among Caucasians: A meta-analysis. Sports Medicine - Open, 4(1), 46. https://doi.org/10.1186/s40798-018-0161-0

Tharabenjasin, P., Pabalan, N., & Jarjanazi, H. (2019). Association of PPARGC1A Gly428Ser (rs8192678) polymorphism with potential for athletic ability and sports performance: A meta-analysis. PLoS ONE, 14(1), e0200967. https://doi.org/10.1371/journal.pone.0200967

Shukla, M., Gupta, R., Pandey, V., Srivastava, A., & Mishra, B. N. (2020). VEGFA promoter polymorphisms rs699947 and rs35569394 are associated with the risk of anterior cruciate ligament ruptures among Indian athletes: A cross-sectional study. Orthopaedic Journal of Sports Medicine, 8(12), 2325967120964472. https://doi.org/10.1177/2325967120964472

Moreland, E., Borisov, O. V., Semenova, E. A., Zheltyakova, M. S., Shved, N., Andrianov, V., Zotova, I. V., Ezhova, O. A., & Ahmetov, I. I. (2022). Polygenic profile of elite strength athletes. Journal of Strength and Conditioning Research, 36(9), 2509–2514. https://doi.org/10.1519/JSC.0000000000003901

Al-Khelaifi, F., Diboun, I., Donati, F., Mrakovcic, M., Gavahian, M., El-Merhi, F., El-Dahshan, K., Al-Saadi, A., Al-Sayari, A., Suhre, K., & Al-Mohannadi, A. S. (2019). Metabolic GWAS of elite athletes reveals novel genetically-influenced metabolites associated with athletic performance. Scientific Reports, 9(1), 19889. https://doi.org/10.1038/s41598-019-56496-7

Semenova, E. A., Hall, E. C. R., & Ahmetov, I. I. (2023). Genes and athletic performance: The 2023 update. Genes, 14(6), 1235. https://doi.org/10.3390/genes14061235

Varillas-Delgado, D., Del Coso, J., Gutiérrez-Hellín, J., Muñoz, A., & Ruiz, M. A. (2022). Genetics and sports performance: The present and future in the identification of talent for sports based on DNA testing. European Journal of Applied Physiology, 122(8), 1811–1830. https://doi.org/10.1007/s00421-022-04945-z

Alves, C. R., Alves, G. B., Pereira, A. C., & Krieger, J. E. (2013). Vascular reactivity and ACE activity response to exercise training are modulated by the +9/-9 bradykinin B₂ receptor gene functional polymorphism. Physiological Genomics, 45(12), 487–492. https://doi.org/10.1152/physiolgenomics.00065.2012

Mei, T., Li, Y., Li, X., Wang, Q., Li, W., Liu, D., & Yang, H. (2024). A genotype-phenotype model for predicting resistance training effects on leg press performance. International Journal of Sports Medicine, 45(6), 458–472. https://doi.org/10.1055/a-2234-0159

Published
2025-12-23
Citations
How to Cite
Karol Demel, Filip Kowal, Michał Pietrucha, Adrian Dyląg, Jakub Król, Justyna Talaska, Antoni Kantor, Zuzanna Szatkowska, Bartosz Kuś, & Adriana Potoczek. (2025). GENETICS AND SPORT PERFORMANCE: ARE WE READY FOR GENOTYPE-BASED TRAINING?. International Journal of Innovative Technologies in Social Science, 2(4(48). https://doi.org/10.31435/ijitss.4(48).2025.4127