THE ROLE OF SOY AND OTHER SOURCES OF EXOGENOUS ESTROGENS IN MODIFICATION OF PCOS SYMPTOMS AND OTHER HORMONAL DISORDERS IN WOMEN
Abstract
Background: Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women of reproductive age, characterized by hyperandrogenism, ovulatory dysfunction, and metabolic abnormalities. Despite pharmacological and dietary advances, there remains a growing interest in natural therapeutic approaches. Phytoestrogens—plant-derived compounds structurally similar to endogenous estrogens—have gained attention as potential modulators of hormonal and metabolic balance.
Aim: This review summarizes current knowledge on the role of soy and other dietary sources of phytoestrogens in modulating PCOS symptoms and related hormonal disorders, with emphasis on their mechanisms of action, bioavailability, and clinical effects.
Methods: A comprehensive literature search was conducted using PubMed, PubMed Central, and Google Scholar, including clinical trials, experimental studies, and meta-analyses assessing the effects of phytoestrogens—mainly isoflavones, lignans, and stilbenes—on hormonal and metabolic parameters in women with PCOS and during menopause.
Results: Soy isoflavones, particularly genistein and daidzein, selectively bind to estrogen receptors ERα and ERβ, influencing hormonal profiles, insulin sensitivity, and the LH/FSH ratio. Flaxseed lignans may enhance SHBG levels and regulate estrogen bioavailability. The efficacy of phytoestrogens depends on their form, processing, and gut microbiota composition.
Conclusion: Phytoestrogens appear to be a promising adjunct in the management of PCOS and other hormonal disorders, offering potential benefits for endocrine and metabolic regulation. However, further large-scale, well-designed clinical studies are required to establish optimal dosage, long-term safety, and individualized therapeutic potential.
References
Escobar-Morreale, H. F. (2018). Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment. Nature Reviews Endocrinology, 14(5), 270–284. https://doi.org/10.1038/nrendo.2018.24
Rosenfield, R. L., & Ehrmann, D. A. (2016). The pathogenesis of polycystic ovary syndrome (PCOS): The hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocrine Reviews, 37(5), 467–520. https://doi.org/10.1210/er.2015-1104
Azziz, R., Carmina, E., Chen, Z., Dunaif, A., Laven, J. S. E., Legro, R. S., Lizneva, D., Natterson-Horowtiz, B., Teede, H. J., Yildiz, B. O., & … (2016). Polycystic ovary syndrome. Nature Reviews Disease Primers, 2(16057). https://doi.org/10.1038/nrdp201657
Davidson, R., Motan, T., & Korownyk, C. (2016). Clomiphene for anovulatory infertility. Can Fam Physician, 62(6), 492–493. PMCID: PMC4907558.
Tyler, B., Walford, H., Tamblyn, J., Keay, S. D., Mavrelos, D., Yasmin, E., & Al Wattar, B. H. (2022). Interventions to optimise embryo transfer in women undergoing assisted conception: A comprehensive systematic review and meta-analyses. Human Reproduction Update, 28(4), 480–500. https://doi.org/10.1093/humupd/dmac009
Amiri, M., Nahidi, F., Bidhendi Yarandi, R., & Ramezani Tehrani, F. (2020). Effects of oral contraceptives on the quality of life of women with polycystic ovary syndrome: A crossover randomized controlled trial. Health and Quality of Life Outcomes, 18(1), 293. https://doi.org/10.1186/s12955‑020‑01544‑4
Lim, S. S., Hutchison, S. K., Van Ryswyk, E., Norman, R. J., Teede, H. J., & Moran, L. J. (2019). Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database of Systematic Reviews, 2019(3), CD007506. https://doi.org/10.1002/14651858.CD007506.pub4
Domínguez‑López, I., Yago‑Aragón, M., Salas‑Huetos, A., Tresserra‑Rimbau, A., & Hurtado‑Barroso, S. (2020). Effects of dietary phytoestrogens on hormones throughout a human lifespan: A review. Nutrients, 12(8), 2456. https://doi.org/10.3390/nu12082456
Chmielewska, N. (2013, 29 października). Wpływ fitoestrogenów na funkcjonowanie układu rozrodczego. Biotechnologia.pl. https://biotechnologia.pl/biotechnologia/wplyw-fitoestrogenow-na-funkcjonowanie-ukladu-rozrodczego,13099
Patra, S., Gorai, S., Pal, S., Ghosh, K., Pradhan, S., & Chakrabarti, S. (2023). A review on phytoestrogens: Current status and future direction. Phytotherapy Research, 37(7), 3097–3120. https://doi.org/10.1002/ptr.7861
Falsetti, I., Palmini, G., Iantomasi, T., Brandi, M. L., & Tonelli, F. (2024). Mechanisms of action of phytoestrogens and their role in familial adenomatous polyposis. Pharmaceutics, 16(5), 640. https://doi.org/10.3390/pharmaceutics16050640
Ye, H., & colleagues. (2019). Food flavonoid ligand structure/estrogen receptor-α affinity: Molecular modelling studies of a flavonoid library. Biochemical Pharmacology, 172, 113–123. https://doi.org/10.1016/S0278-6915(19)30192-9
Ferrière, F., Aasi, N., Flouriot, G., & Pakdel, F. (2025). Exploring the complex mechanisms of isoflavones: From cell bioavailability to cell dynamics and breast cancer. Phytotherapy Research, 39(2), 957-979. https://doi.org/10.1002/ptr.8417
Kumari, N.,Kumari, R., Dua, A., Singh, M., Kumar, R., Singh, P., Duyar‑Ayerdi, S., Pradeep, S., Ojesina, A. I., & Kumar, R. (2024). From gut to hormones: Unraveling the role of gut microbiota in (phyto)estrogen modulation in health and disease. Molecular Nutrition & Food Research, 68(6), e2300688. https://doi.org/10.1002/mnfr.202300688
Kim, I.-S. (2021). Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans. Antioxidants, 10(7), 1064. https://doi.org/10.3390/antiox10071064
Messina, M. (2016). Soy and health update: Evaluation of the clinical and epidemiologic literature. Nutrients, 8(12), 754. https://doi.org/10.3390/nu8120754
Jamilian, M., & Asemi, Z. (2016). The effects of soy isoflavones on metabolic and hormonal parameters in women with polycystic ovary syndrome. The Journal of Clinical Endocrinology & Metabolism, 101(9), 3386–3394. https://doi.org/10.1210/jc.2016-1762
Haudum, C., Lindheim, L., Ascani, A., Trummer, C., Horvath, A., Münzker, J., & Obermayer‑Pietsch, B. (2020). Impact of short‑term isoflavone intervention in polycystic ovary syndrome (PCOS) patients on microbiota composition and metagenomics. Nutrients, 12(6), 1622. https://doi.org/10.3390/nu12061622
Zilaee, M., Amirhosseini, M., Raeisi, S., Ghaedi, M., & Mehrabi, Y. (2020). The effects of soy isoflavones on total testosterone and follicle‑stimulating hormone levels in women with polycystic ovary syndrome: A systematic review and meta‑analysis. European Journal of Contraception & Reproductive Health Care, 26(4), 189‑198. https://doi.org/10.1080/13625187.2020.1761956
Soyata, A. (2021). Isoflavones in soybean as a daily nutrient: Mechanisms of action and how they alter the pharmacokinetics of drugs. Turkish Journal of Pharmaceutical Sciences, 18(3), 299‑316. https://doi.org/10.18502/tjps.v18i3.8744 (PMCID: PMC8744443)
Najdgholami, Z., Sedgi, F. M., Ghalishourani, S. S., Feyzpour, M., & Rahimlou, M. (2025). Flaxseed intervention and reproductive endocrine profiles in patients with polycystic ovary syndrome: An open‑labeled randomized controlled clinical trial. Frontiers in Endocrinology, 16, Article 1531762. https://doi.org/10.3389/fendo.2025.1531762
Mehraban, M., Jelodar, G., & Rahmanifar, F. (2020). A combination of spearmint and flaxseed extract improved endocrine and histomorphology of ovary in experimental PCOS. Journal of Ovarian Research, 13, Article 32. https://doi.org/10.1186/s13048-020-00633-8
Jukanti, A. K., Gaur, P. M., Gowda, C. L. L., & Chibbar, R. N. (2012). Nutritional quality and health benefits of chickpea ( Cicer arietinum L.): A review. British Journal of Nutrition, 108 (S1), S11–S26. https://doi.org/10.1017/S0007114512000797
Canivenc‑Lavier, M.-C., & Bennetau‑Pelissero, C. (2023). Phytoestrogens and health effects. Nutrients, 15(2), 317. https://doi.org/10.3390/nu15020317
Kazemi, M., McBreairty, L. E., Chizen, D. R., Pierson, R. A., Chilibeck, P. D., & Zello, G. A. (2018). A comparison of a pulse‑based diet and the Therapeutic Lifestyle Changes diet in combination with exercise and health counselling on the cardio‑metabolic risk profile in women with polycystic ovary syndrome: A randomized controlled trial. Nutrients, 10(10), 1387. https://doi.org/10.3390/nu10101387 (PMCID: PMC6212867)
Kazemi, M., Pierson, R. A., McBreairty, L. E., Chilibeck, P. D., Zello, G. A., & Chizen, D. R. (2020). A randomized controlled trial of a lifestyle intervention with longitudinal follow‑up on ovarian dysmorphology in women with polycystic ovary syndrome. Clinical Endocrinology (Oxford), 92(6), 525‑535. https://doi.org/10.1111/cen.14179
Gao, Y., Yao, Y., Zhu, Y., & Ren, G. (2015). Isoflavone content and composition in chickpea (Cicer arietinum L.) sprouts germinated under different conditions. Journal of Agricultural and Food Chemistry, 63(10), 2701–2707. https://doi.org/10.1021/jf5057524
Kirkman, T. R., Lampe, J. W., Slavin, J. L., Winkel, A., Qiao, N., & Duncan, C. W. (1995). Urinary lignan and isoflavonoid excretion in men and women consuming controlled diets. Cancer Epidemiology, Biomarkers & Prevention, 4(5), 459–465. https://pubmed.ncbi.nlm.nih.gov/7491293/
Makara‑Studzińska, M. T., Kryś‑Noszczyk, K. M., & Jakiel, G. (2014). Epidemiology of the symptoms of menopause – an intercontinental review. Menopause Review / Przegląd Menopauzalny, 13(3), 203–211. https://doi.org/10.5114/pm.2014.43827
Luan, H., Liu, Q., Guo, Y., Fan, H., A, S., & Lin, J. (2025). Effects of soy isoflavones on menopausal symptoms in perimenopausal women: A systematic review and meta‑analysis. PeerJ, e19715. https://doi.org/10.7717/peerj.19715
Kanadys, W., Barańska, A., Błaszczuk, A., Polz‑Dacewicz, M., Drop, B., Kanecki, K., & Malm, M. (2021). Evaluation of clinical meaningfulness of red clover (Trifolium pratense L.) extract to relieve hot flushes and menopausal symptoms in peri‑ and post‑menopausal women: A systematic review and meta‑analysis of randomized controlled trials. Nutrients, 13(4), 1258. https://doi.org/10.3390/nu13041258 (PMCID: PMC8069620)
Costa, J. P. L., Brito, H. O., Galvão‑Moreira, L. V., Brito, L. G. O., Costa‑Paiva, L., & Brito, L. M. O. (2020). Randomized double‑blind placebo‑controlled trial of the effect of Morus nigra L. (black mulberry) leaf powder on symptoms and quality of life among climacteric women. International Journal of Gynaecology & Obstetrics, 148(2), 243‑252. https://doi.org/10.1002/ijgo.13057
Costa, J. G., Brito, H. O., Brito, L. M. O., Galvão‑Moreira, L. V., Costa‑Paiva, L., & Brito, L. G. O. (2017). Combined exercise training reduces climacteric symptoms without the additive effects of isoflavone supplementation: A clinical, controlled, randomised, double‑blind study. Lifestyle Medicine, 13(4), 353‑361. https://doi.org/10.1177/0260106017727359
U.S. Department of Agriculture, Agricultural Research Service. (2008). USDA database for the isoflavone content of selected foods, Release 2.1 [Data set]. https://www.ars.usda.gov/ARSUserFiles/80400525/Data/isoflav/Isoflav_R2-1.pdf
Deorukhkar, A., & Ananthanarayan, L. (2021). Effect of thermal processing methods on flavonoid and isoflavone content of decorticated and whole pulses. Journal of Food Science and Technology, 58(2), 465‑473. https://doi.org/10.1007/s13197‑020‑04555‑7
Chiarello, M. D., Le Guerroué, J.-L., Chagas, C. M. S., Franco, O. L., Bianchini, E., & João, M. J. (2006). Influence of heat treatment and grain germination on the isoflavone profile of soymilk. Journal of Food Biochemistry, 30(2), 234–247. https://doi.org/10.1111/j.1745-4514.2006.00058.x
Li‑Jun, Y., Hai‑Ming, S., Fang, Z., Xue, Z., & Xia, Z. (2004). Changes in isoflavone contents and composition of sufu (fermented soybean curd) during processing. Food Chemistry, 88(3), 365‑370. https://doi.org/10.1016/S0308‑8146(04)00378‑8
Copyright (c) 2025 Marianna Latour, Zofia Laska, Honorata Juniewicz, Zuzanna Kudlińska, Patryk Heryć, Karolina Kananowicz, Ryszard Łagowski, Julia Kosęda, Anna Jędrasiak, Jakub Piotrowski

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

