DRUG-RESISTANT EPILEPSY – CURRENT TREATMENT STRATEGIES AND FUTURE THERAPEUTIC PERSPECTIVES
Abstract
Drug-resistant epilepsy is a chronic neurological disorder characterized by persistent seizures despite the use of appropriate pharmacotherapy. This condition significantly deteriorates patients’ quality of life, in-creases the risk of psychiatric disorders, and contributes to more frequent hospitalizations. Despite consid-erable progress in the development of new generations of antiepileptic drugs, there remains a pressing need to explore innovative therapeutic strategies. This article presents treatment approaches including pharmacotherapy, neurostimulation techniques, and the use of surgical interventions in epilepsy manage-ment. Special attention is given to targeted therapies that take into account genetic, immunological, and metabolic mechanisms of epilepsy. Although these therapies hold the potential for treatment, their imple-mentation is associated with numerous challenges, high costs, and the necessity for procedural standardi-zation. The article emphasizes the need for interdisciplinary collaboration and further research to improve treatment efficacy for patients suffering from drug-resistant epilepsy.
References
Fiest, K. M., Sauro, K. M., Wiebe, S., Patten, S. B., Kwon, C., Dykeman, J., Pringsheim, T., Lorenzetti, D. L., & Jetté, N. (2016). Prevalence and incidence of epilepsy. Neurology, 88(3), 296–303. https://doi.org/10.1212/wnl.0000000000003509
Kwan, P., Arzimanoglou, A., Berg, A. T., Brodie, M. J., Hauser, W. A., Mathern, G., Moshé, S. L., Perucca, E., Wiebe, S., & French, J. (2009). Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia, 51(6), 1069–1077. https://doi.org/10.1111/j.1528-1167.2009.02397.x
Akdemir, V., Sut, N., & Guldiken, B. (2016). Factors affecting the quality of life in drug-resistant epilepsy patients. Acta Neurologica Belgica, 116(4), 513–518. https://doi.org/10.1007/s13760-016-0622-5
Sultana, B., Panzini, M., Carpentier, A. V., Comtois, J., Rioux, B., Gore, G., Bauer, P. R., Kwon, C., Jetté, N., Josephson, C. B., & Keezer, M. R. (2021). Incidence and prevalence of Drug-Resistant Epilepsy. Neurology, 96(17), 805–817. https://doi.org/10.1212/wnl.0000000000011839
Grinalds, M. S., Yoder, C., Krauss, Z., Chen, A. M., & Rhoney, D. H. (2022). Scoping review of rational polytherapy in patients with drug‐resistant epilepsy. Pharmacotherapy the Journal of Human Pharmacology and Drug Therapy, 43(1), 53–84. https://doi.org/10.1002/phar.2748
Jehi, L. (2024). Advances in therapy for refractory epilepsy. Annual Review of Medicine. https://doi.org/10.1146/annurev-med-050522-034458
Pérez-Pérez, D., Frías-Soria, C. L., & Rocha, L. (2019). Drug-resistant epilepsy: From multiple hypotheses to an integral explanation using preclinical resources. Epilepsy & Behavior, 121, 106430. https://doi.org/10.1016/j.yebeh.2019.07.031
Han, J., Wang, Y., Wei, P., Lu, D., & Shan, Y. (2024). Unveiling the hidden connection: the blood-brain barrier’s role in epilepsy. Frontiers in Neurology, 15. https://doi.org/10.3389/fneur.2024.1413023
Zabrodskaya, Y., Paramonova, N., Litovchenko, A., Bazhanova, E., Gerasimov, A., Sitovskaya, D., Nezdorovina, V., Kravtsova, S., Malyshev, S., Skiteva, E., & Samochernykh, K. (2023). Neuroinflammatory dysfunction of the Blood–Brain barrier and basement membrane dysplasia play a role in the development of Drug-Resistant epilepsy. International Journal of Molecular Sciences, 24(16), 12689. https://doi.org/10.3390/ijms241612689
Beniczky, S., Trinka, E., Wirrell, E., Abdulla, F., Baradie, R. A., Vanegas, M. A., Auvin, S., Singh, M. B., Blumenfeld, H., Fressola, A. B., Caraballo, R., Carreno, M., Cendes, F., Charway, A., Cook, M., Craiu, D., Ezeala‐Adikaibe, B., Frauscher, B., French, J., . . . Cross, J. H. (2025). Updated classification of epileptic seizures: Position paper of the International League Against Epilepsy. Epilepsia. https://doi.org/10.1111/epi.18338
Katyal, R. (2025). Classification and diagnosis of epilepsy. CONTINUUM Lifelong Learning in Neurology, 31(1), 14–37. https://doi.org/10.1212/con.0000000000001519
Kannan, L., Jain, P., & Nayak, D. (2021). Role of Video-EEG in children. The Indian Journal of Pediatrics, 88(10), 1007–1016. https://doi.org/10.1007/s12098-020-03605-4
Cendes, F. (2013). Neuroimaging in investigation of patients with epilepsy. CONTINUUM Lifelong Learning in Neurology, 19, 623–642. https://doi.org/10.1212/01.con.0000431379.29065.d3
S Lippé 1 , M Lassonde[Neuropsychological profile of intractable partial epilepsies]. (2004, June 1). PubMed. https://pubmed.ncbi.nlm.nih.gov/15331960/
Zeng, K., Wang, X., Xi, Z., & Yan, Y. (2010). Adverse effects of carbamazepine, phenytoin, valproate and lamotrigine monotherapy in epileptic adult Chinese patients. Clinical Neurology and Neurosurgery, 112(4), 291–295. https://doi.org/10.1016/j.clineuro.2009.12.014
Nevitt, S. J., Sudell, M., Cividini, S., Marson, A. G., & Smith, C. T. (2022). Antiepileptic drug monotherapy for epilepsy: a network meta-analysis of individual participant data. Cochrane Library, 2022(4). https://doi.org/10.1002/14651858.cd011412.pub4
Giorgi, L., Gomez, G., O??Neill, F., Hammer, A. E., & Risner, M. (2001). The tolerability of lamotrigine in elderly patients with epilepsy. Drugs & Aging, 18(8), 621–630. https://doi.org/10.2165/00002512-200118080-00006
Gouveia, F. V., Warsi, N. M., Suresh, H., Matin, R., & Ibrahim, G. M. (2024). Neurostimulation treatments for epilepsy: Deep brain stimulation, responsive neurostimulation and vagus nerve stimulation. Neurotherapeutics, 21(3), e00308. https://doi.org/10.1016/j.neurot.2023.e00308
Ramsay, R. E., Uthman, B. M., Augustinsson, L. E., Upton, A. R. M., Naritoku, D., Willis, J., Treig, T., Barolat, G., & Wernicke, J. F. (1994). Vagus nerve stimulation for treatment of partial seizures: 2. Safety, side effects, and tolerability. Epilepsia, 35(3), 627–636. https://doi.org/10.1111/j.1528-1157.1994.tb02483.x
Salanova, V., Witt, T., Worth, R., Henry, T. R., Gross, R. E., Nazzaro, J. M., Labar, D., Sperling, M. R., Sharan, A., Sandok, E., Handforth, A., Stern, J. M., Chung, S., Henderson, J. M., French, J., Baltuch, G., Rosenfeld, W. E., Garcia, P., Barbaro, N. M., . . . Bergen, D. (2015). Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology, 84(10), 1017–1025. https://doi.org/10.1212/wnl.0000000000001334
Matias, C. M., Sharan, A., & Wu, C. (2019). Responsive neurostimulation for the treatment of epilepsy. Neurosurgery Clinics of North America, 30(2), 231–242. https://doi.org/10.1016/j.nec.2018.12.006
Roa, J. A., Marcuse, L., Fields, M., La Vega-Talbott, M., Yoo, J. Y., Wolf, S. M., McGoldrick, P., Ghatan, S., & Panov, F. (2023). Long-term outcomes after responsive neurostimulation for treatment of refractory epilepsy: a single-center experience of 100 cases. Journal of Neurosurgery, 139(5), 1463–1470. https://doi.org/10.3171/2023.2.jns222116
Milovanović, J. R., Janković, S. M., Milovanović, D., Zečević, D. R., Folić, M., Kostić, M., Ranković, G., & Stefanović, S. (2019). Contemporary surgical management of drug-resistant focal epilepsy. Expert Review of Neurotherapeutics, 20(1), 23–40. https://doi.org/10.1080/14737175.2020.1676733
Sperling, M. R., & Schnur, J. K. (2002). Temporal lobectomy. Archives of Neurology, 59(3), 482. https://doi.org/10.1001/archneur.59.3.482
Devlin, A. M. (2003). Clinical outcomes of hemispherectomy for epilepsy in childhood and adolescence. Brain, 126(3), 556–566. https://doi.org/10.1093/brain/awg052
Van Empelen, R., Jennekens-Schinkel, A., Buskens, E., Helders, P., & Van Nieuwenhuizen, O. (2004). Functional consequences of hemispherectomy. Brain, 127(9), 2071–2079. https://doi.org/10.1093/brain/awh224
Auvin, S. (2025). Targeted therapies in epilepsies. Revue Neurologique. https://doi.org/10.1016/j.neurol.2025.04.003
Myers, K. A. (2023). SCN1A as a therapeutic target for Dravet syndrome. Expert Opinion on Therapeutic Targets, 27(6), 459–467. https://doi.org/10.1080/14728222.2023.2230364
Colasante, G., Lignani, G., Brusco, S., Di Berardino, C., Carpenter, J., Giannelli, S., Valassina, N., Bido, S., Ricci, R., Castoldi, V., Marenna, S., Church, T., Massimino, L., Morabito, G., Benfenati, F., Schorge, S., Leocani, L., Kullmann, D. M., & Broccoli, V. (2019). DCAS9-Based SCN1A gene activation restores inhibitory interneuron excitability and attenuates seizures in Dravet syndrome mice. Molecular Therapy, 28(1), 235–253. https://doi.org/10.1016/j.ymthe.2019.08.018
Mukhtar, I. (2020). Inflammatory and immune mechanisms underlying epileptogenesis and epilepsy: From pathogenesis to treatment target. Seizure, 82, 65–79. https://doi.org/10.1016/j.seizure.2020.09.015
Lindefeldt, M., Eng, A., Darban, H., Bjerkner, A., Zetterström, C. K., Allander, T., Andersson, B., Borenstein, E., Dahlin, M., & Prast-Nielsen, S. (2019). The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. Npj Biofilms and Microbiomes, 5(1). https://doi.org/10.1038/s41522-018-0073-2
Lum, G. R., Ha, S. M., Olson, C. A., Blencowe, M., Paramo, J., Reyes, B., Matsumoto, J. H., Yang, X., & Hsiao, E. Y. (2023b). Ketogenic diet therapy for pediatric epilepsy is associated with alterations in the human gut microbiome that confer seizure resistance in mice. Cell Reports, 42(12), 113521. https://doi.org/10.1016/j.celrep.2023.113521
Arulsamy, A., Tan, Q. Y., Balasubramaniam, V., O’Brien, T. J., & Shaikh, M. F. (2020b). Gut Microbiota and Epilepsy: A Systematic review on their relationship and possible therapeutics. ACS Chemical Neuroscience, 11(21), 3488–3498. https://doi.org/10.1021/acschemneuro.0c00431
Pitkänen, A., Löscher, W., Vezzani, A., Becker, A. J., Simonato, M., Lukasiuk, K., Gröhn, O., Bankstahl, J. P., Friedman, A., Aronica, E., Gorter, J. A., Ravizza, T., Sisodiya, S. M., Kokaia, M., & Beck, H. (2016). Advances in the development of biomarkers for epilepsy. The Lancet Neurology, 15(8), 843–856. https://doi.org/10.1016/s1474-4422(16)00112-5
De Wachter, M., Schoonjans, A., Weckhuysen, S., Van Schil, K., Löfgren, A., Meuwissen, M., Jansen, A., & Ceulemans, B. (2023). From diagnosis to treatment in genetic epilepsies: Implementation of precision medicine in real-world clinical practice. European Journal of Paediatric Neurology, 48, 46–60. https://doi.org/10.1016/j.ejpn.2023.11.003
Alkhaldi, M., Joudeh, L. A., Ahmed, Y. B., & Husari, K. S. (2024). Artificial Intelligence and Telemedicine in Epilepsy and EEG: A Narrative review. Seizure, 121, 204–210. https://doi.org/10.1016/j.seizure.2024.08.024
AbuAlrob, M. A., Itbaisha, A., & Mesraoua, B. (2025). Unlocking new frontiers in epilepsy through AI: From seizure prediction to personalized medicine. Epilepsy & Behavior, 166, 110327. https://doi.org/10.1016/j.yebeh.2025.110327
Fattorusso, A., Matricardi, S., Mencaroni, E., Dell’Isola, G. B., Di Cara, G., Striano, P., & Verrotti, A. (2021). The Pharmacoresistant Epilepsy: An Overview on existent and new emerging therapies. Frontiers in Neurology, 12. https://doi.org/10.3389/fneur.2021.674483
Knowles, J. K., Helbig, I., Metcalf, C. S., Lubbers, L. S., Isom, L. L., Demarest, S., Goldberg, E. M., George, A. L., Lerche, H., Weckhuysen, S., Whittemore, V., Berkovic, S. F., & Lowenstein, D. H. (2022). Precision medicine for genetic epilepsy on the horizon: Recent advances, present challenges, and suggestions for continued progress. Epilepsia, 63(10), 2461–2475. https://doi.org/10.1111/epi.17332
Kearney, H., Byrne, S., Cavalleri, G. L., & Delanty, N. (2019). Tackling epilepsy with high-definition precision medicine. JAMA Neurology, 76(9), 1109. https://doi.org/10.1001/jamaneurol.2019.2384
Views:
62
Downloads:
18
Copyright (c) 2025 Honorata Juniewicz, Zuzanna Kudlińska, Ryszard Łagowski, Julia Kosęda, Anna Jędrasiak, Jakub Piotrowski, Patryk Heryć, Karolina Kananowicz, Zofia Laska, Marianna Latour

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.