WEARABLE HEALTH TECHNOLOGIES IN CHRONIC DISEASE MANAGEMENT: CURRENT APPLICATIONS, BARRIERS, AND FUTURE PERSPECTIVES
Abstract
Wearable technologies are driving a paradigm shift in chronic disease management from clinics to patients 'everyday environments. Their applications are diverse: early arrhythmia detection in cardiology, optimal glycemic control in diabetology, remote monitoring in pulmonology, and opening new paradigms for objective assessment in neurology and medication adherence. This constant stream of data drives proactive, personalized & data-driven healthcare.
Many of those advances are still limiting widespread clinical integration. Technical challenges regarding data validation and algorithmic transparency remain, alongside complex ethical questions about data privacy and the risk of algorithmic bias. Also, unresolved economic issues like reimbursement models threaten to increase health inequalities The future of digital health will depend on integrating wearable data with artificial intelligence. It will unlock predictive analytics to forecast disease exacerbations and enable the development of reliable digital biomarkers within the vision of P4 medicine - predictive, preventive, personalized, and participatory.
This narrative review critically summarizes the available data, identifies these ethical and practical obstacles, and suggests ways to safely, successfully, and fairly incorporate wearable technology into standard medical procedures.
References
Piwek, L., Ellis, D. A., Andrews, S., & Joinson, A. (2016). The rise of consumer health wearables: Promises and barriers. PLoS Medicine, 13(2), e1001953. https://doi.org/10.1371/journal.pmed.1001953
Adepoju, V. A., Jamil, S., Biswas, M. S., & Chowdhury, A. A. (2024). Wearable technology in the management of chronic diseases: A growing concern. Chronic Diseases and Translational Medicine, 11(2), 117–121. https://doi.org/10.1002/cdt3.156
Gagnon, M. P., Ouellet, S., Attisso, E., Supper, W., Amil, S., Rhéaume, C., Paquette, J. S., Chabot, C., Laferrière, M. C., & Sasseville, M. (2024). Wearable devices for supporting chronic disease self-management: Scoping review. Interactive Journal of Medical Research, 13, e55925. https://doi.org/10.2196/55925
Lodewyk, K., Wiebe, M., Dennett, L., Larsson, J., Greenshaw, A., et al. (2025). Wearables research for continuous monitoring of patient outcomes: A scoping review. PLOS Digital Health, 4(5), e0000860. https://doi.org/10.1371/journal.pdig.0000860
Sun, Y., Chen, J., Ji, M., & Li, X. (2025). Wearable technologies for health promotion and disease prevention in older adults: Systematic scoping review and evidence map. Journal of Medical Internet Research, 27, e69077. https://doi.org/10.2196/69077
Steinhubl, S. R., & Topol, E. J. (2018). Digital medicine, on its way to being just plain medicine. NPJ Digital Medicine, 1, 20175. https://doi.org/10.1038/s41746-017-0005-1
Bumgarner, J. M., Lambert, C. T., Hussein, A. A., Cantillon, D. J., Baranowski, B., Wolski, K., Lindsay, B. D., Wazni, O. M., & Tarakji, K. G. (2018). Smartwatch algorithm for automated detection of atrial fibrillation. Journal of the American College of Cardiology, 71(21), 2381–2388. https://doi.org/10.1016/j.jacc.2018.03.003
Perez, M. V., Mahaffey, K. W., Hedlin, H et.al Apple Heart Study Investigators. (2019). Large-scale assessment of a smartwatch to identify atrial fibrillation. The New England Journal of Medicine, 381(20), 1909–1917. https://doi.org/10.1056/NEJMoa1901183
Hindricks, G., et al. (2021). 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the EACTS. European Heart Journal, 42(5), 373–498.
Addleman, J. S., Lackey, N. S., Tobin, M. A., Lara, G. A., Sinha, S., Morse, R. M., Hajduczok, A. G., Gharbo, R. S., & Gevirtz, R. N. (2025). Heart rate variability applications in medical specialties: A narrative review. Applied Psychophysiology and Biofeedback, 50(3), 359–381. https://doi.org/10.1007/s10484-025-09708-y
Sarkar, S., & Ghosh, A. (2023). Schrödinger spectrum based continuous cuff-less blood pressure estimation using clinically relevant features from PPG signal and its second derivative. Computers in Biology and Medicine, 166, 107558. https://doi.org/10.1016/j.compbiomed.2023.107558
Johnson, K. W., Torres Soto, J., Glicksberg, B. S., Shameer, K., Miotto, R., Ali, M., Ashley, E., & Dudley, J. T. (2018). Artificial intelligence in cardiology. Journal of the American College of Cardiology, 71(23), 2668–2679. https://doi.org/10.1016/j.jacc.2018.03.521
Battelino, T., Danne, T., Bergenstal, R. M., et al. (2019). Clinical targets for continuous glucose monitoring data interpretation: Recommendations from the International Consensus on Time in Range. Diabetes Care, 42(8), 1593–1603. https://doi.org/10.2337/dci19-0028
Polonsky, W. H., Hessler, D., Ruedy, K. J., & Beck, R. W.; DIAMOND Study Group. (2017). The impact of continuous glucose monitoring on markers of quality of life in adults with type 1 diabetes: Further findings from the DIAMOND randomized clinical trial. Diabetes Care, 40(6), 736–741. https://doi.org/10.2337/dc17-0133
Gilbert, T. R., Noar, A., Blalock, O., & Polonsky, W. H. (2021). Change in hemoglobin A1c and quality of life with real-time continuous glucose monitoring use by people with insulin-treated diabetes in the Landmark study. Diabetes Technology & Therapeutics, 23(S1), S35–S39. https://doi.org/10.1089/dia.2020.0666
Global Initiative for Chronic Obstructive Lung Disease (GOLD). (2024). Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: 2024 Report. Global Initiative for Chronic Obstructive Lung Disease. https://goldcopd.org/2024-gold-report/
Shah, A. J., Althobiani, M. A., Saigal, A., Ogbonnaya, C. E., Hurst, J. R., & Mandal, S. (2023). Wearable technology interventions in patients with chronic obstructive pulmonary disease: A systematic review and meta-analysis. NPJ Digital Medicine, 6(1), 222. https://doi.org/10.1038/s41746-023-00962-0
Oliveira, T. R. A., Fernandes, A. T. D. N. S. F., Santino, T. A., Menescal, F. E. P. D. S., & Nogueira, P. A. M. S. (2024). Effects of using wearable devices to monitor physical activity in pulmonary rehabilitation programs for chronic respiratory diseases: A systematic review protocol. PLoS ONE, 19(7), e0308109. https://doi.org/10.1371/journal.pone.0308109
Chen, G., Shen, S., Tat, T., et al. (2022). Wearable respiratory sensors for COVID-19 monitoring. View (Beijing), 3(5), 20220024. https://doi.org/10.1002/VIW.20220024
Godinho, C., Domingos, J., Cunha, G., et al. (2016). A systematic review of the characteristics and validity of monitoring technologies to assess Parkinson’s disease. Journal of NeuroEngineering and Rehabilitation, 13, 24. https://doi.org/10.1186/s12984-016-0136-7
Bougea, A. (2024). Digital biomarkers in Parkinson’s disease. Advances in Clinical Chemistry, 123, 221–253. https://doi.org/10.1016/bs.acc.2024.06.005
Ma, Y., Zhang, Y., Li, R., Cheng, W., & Wu, F. (2025). The experience and perception of wearable devices in Parkinson’s disease patients: A systematic review and meta-synthesis of qualitative studies. Journal of Neurology, 272(5), 350. https://doi.org/10.1007/s00415-025-13085-1
Iino, H., Kizaki, H., Imai, S., & Hori, S. (2024). Medication management initiatives using wearable devices: Scoping review. JMIR Human Factors, 11, e57652. https://doi.org/10.2196/57652
Kim, S. K., Park, S. Y., Hwang, H. R., Moon, S. H., & Park, J. W. (2025). Effectiveness of mobile health intervention in medication adherence: A systematic review and meta-analysis. Journal of Medical Systems, 49(1), 13. https://doi.org/10.1007/s10916-024-02135-2
Nebeker, C., Harlow, J., Espinoza Giacinto, R., Orozco-Linares, R., Bloss, C. S., & Weibel, N. (2017). Ethical and regulatory challenges of research using pervasive sensing and other emerging technologies: IRB perspectives. AJOB Empirical Bioethics, 8(4), 266–276. https://doi.org/10.1080/23294515.2017.1403980
Bouderhem, R. (2023). Privacy and regulatory issues in wearable health technology. Engineering Proceedings, 58(1), 87. https://doi.org/10.3390/ecsa-10-1620
Wang, B., Zhang, L., & Asan, O. (2024). The impact of wearable devices on health management: Insights from consumers’ data. Proceedings of the International Symposium on Human Factors and Ergonomics in Health Care, 13, 175–180. https://doi.org/10.1177/2327857924131007
Daniore, P., Nittas, V., Haag, C., et al. (2024). From wearable sensor data to digital biomarker development: Ten lessons learned and a framework proposal. NPJ Digital Medicine, 7, 161. https://doi.org/10.1038/s41746-024-01151-3
Abdelaal, Y., Aupetit, M., Baggag, A., & Al-Thani, D. (2024). Exploring the applications of explainability in wearable data analytics: Systematic literature review. Journal of Medical Internet Research, 26, e53863. https://doi.org/10.2196/53863
De Sario Velasquez, G. D., Borna, S., Maniaci, M. J., et al. (2024). Economic perspective of the use of wearables in health care: A systematic review. Mayo Clinic Proceedings: Digital Health, 2(3), 299–317https://doi.org/10.1016/j.mcpdig.2024.05.003
Nam, D., Cha, J. M., & Park, K. (2021). Next-generation wearable biosensors developed with flexible bio-chips. Micromachines (Basel), 12(1), 64. https://doi.org/10.3390/mi12010064
Nelson, J., & Charlotte, J. (2025). AI-driven predictive models for chronic disease management. [Manuscript in preparation / Preprint].
Jha, S., & Topol, E. J. (2023). Upending the model of AI adoption. The Lancet, 401(10392), 1920. https://doi.org/10.1016/S0140-6736(23)01136-4
Laubenbacher, R., Niarakis, A., Helikar, T., An, G., Shapiro, B., Malik-Sheriff, R. S., Sego, T. J., Knapp, A., Macklin, P., & Glazier, J. A. (2022). Building digital twins of the human immune system: toward a roadmap. NPJ digital medicine, 5(1), 64. https://doi.org/10.1038/s41746-022-00610-z
Adenekan, T. (2025). Integration of wearable device data into predictive health analytics systems. [Unpublished manuscript / Preprint].
Coravos, A., Khozin, S., & Mandl, K. D. (2019). Developing and adopting safe and effective digital biomarkers to improve patient outcomes. NPJ Digital Medicine, 2(1), 14. https://doi.org/10.1038/s41746-019-0090-4
Flores, M., Glusman, G., Brogaard, K., Price, N. D., & Hood, L. (2013). P4 medicine: How systems medicine will transform the healthcare sector and society. Personalized Medicine, 10(6), 565–576. https://doi.org/10.2217/pme.13.57
Vayena, E., & Blasimme, A. (2017). Biomedical big data: New models of control over access, use and governance. Journal of Bioethical Inquiry, 14(4), 501–513. https://doi.org/10.1007/s11673-017-9809-6
Svensson, E., Osika, W., & Carlbring, P. (2025). Commentary: Trustworthy and ethical AI in digital mental healthcare—Wishful thinking or tangible goal? Internet Interventions, 41, 100844. https://doi.org/10.1016/j.invent.2025.100844
Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science (New York, N.Y.), 366(6464), 447–453. https://doi.org/10.1126/science.aax2342
World Health Organization. (2021). Global strategy on digital health 2020–2025. World Health Organization. https://www.who.int/publications/i/item/9789240020924
Schwalbe, N., & Wahl, B. (2020). Artificial intelligence and the future of global health. The Lancet, 395(10236), 1579–1586. https://doi.org/10.1016/S0140-6736(20)30226-9
Views:
34
Downloads:
26
Copyright (c) 2025 Mateusz Mierniczek, Maria Mierniczek, Aleksandra Mierniczek, Kinga Kaczmarska, Kinga Rosołowska, Jarosław Dudek

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

