WEARABLE HEALTH TECHNOLOGIES IN CHRONIC DISEASE MANAGEMENT: CURRENT APPLICATIONS, BARRIERS, AND FUTURE PERSPECTIVES

Keywords: Wearable Devices, Chronic Disease Management, Digital Health, Artificial Intelligence, Digital Biomarkers, Remote Patient Monitoring

Abstract

Wearable technologies are driving a paradigm shift in chronic disease management from clinics to patients 'everyday environments. Their applications are diverse: early arrhythmia detection in cardiology, optimal glycemic control in diabetology, remote monitoring in pulmonology, and opening new paradigms for objective assessment in neurology and medication adherence. This constant stream of data drives proactive, personalized & data-driven healthcare.

Many of those advances are still limiting widespread clinical integration. Technical challenges regarding data validation and algorithmic transparency remain, alongside complex ethical questions about data privacy and the risk of algorithmic bias. Also, unresolved economic issues like reimbursement models threaten to increase health inequalities  The future of digital health will depend on integrating wearable data with artificial intelligence. It will unlock predictive analytics to forecast disease exacerbations and enable the development of reliable digital biomarkers within the vision of P4 medicine - predictive, preventive, personalized, and participatory.

This narrative review critically summarizes the available data, identifies these ethical and practical obstacles, and suggests ways to safely, successfully, and fairly incorporate wearable technology into standard medical procedures.

References

Piwek, L., Ellis, D. A., Andrews, S., & Joinson, A. (2016). The rise of consumer health wearables: Promises and barriers. PLoS Medicine, 13(2), e1001953. https://doi.org/10.1371/journal.pmed.1001953

Adepoju, V. A., Jamil, S., Biswas, M. S., & Chowdhury, A. A. (2024). Wearable technology in the management of chronic diseases: A growing concern. Chronic Diseases and Translational Medicine, 11(2), 117–121. https://doi.org/10.1002/cdt3.156

Gagnon, M. P., Ouellet, S., Attisso, E., Supper, W., Amil, S., Rhéaume, C., Paquette, J. S., Chabot, C., Laferrière, M. C., & Sasseville, M. (2024). Wearable devices for supporting chronic disease self-management: Scoping review. Interactive Journal of Medical Research, 13, e55925. https://doi.org/10.2196/55925

Lodewyk, K., Wiebe, M., Dennett, L., Larsson, J., Greenshaw, A., et al. (2025). Wearables research for continuous monitoring of patient outcomes: A scoping review. PLOS Digital Health, 4(5), e0000860. https://doi.org/10.1371/journal.pdig.0000860

Sun, Y., Chen, J., Ji, M., & Li, X. (2025). Wearable technologies for health promotion and disease prevention in older adults: Systematic scoping review and evidence map. Journal of Medical Internet Research, 27, e69077. https://doi.org/10.2196/69077

Steinhubl, S. R., & Topol, E. J. (2018). Digital medicine, on its way to being just plain medicine. NPJ Digital Medicine, 1, 20175. https://doi.org/10.1038/s41746-017-0005-1

Bumgarner, J. M., Lambert, C. T., Hussein, A. A., Cantillon, D. J., Baranowski, B., Wolski, K., Lindsay, B. D., Wazni, O. M., & Tarakji, K. G. (2018). Smartwatch algorithm for automated detection of atrial fibrillation. Journal of the American College of Cardiology, 71(21), 2381–2388. https://doi.org/10.1016/j.jacc.2018.03.003

Perez, M. V., Mahaffey, K. W., Hedlin, H et.al Apple Heart Study Investigators. (2019). Large-scale assessment of a smartwatch to identify atrial fibrillation. The New England Journal of Medicine, 381(20), 1909–1917. https://doi.org/10.1056/NEJMoa1901183

Hindricks, G., et al. (2021). 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the EACTS. European Heart Journal, 42(5), 373–498.

Addleman, J. S., Lackey, N. S., Tobin, M. A., Lara, G. A., Sinha, S., Morse, R. M., Hajduczok, A. G., Gharbo, R. S., & Gevirtz, R. N. (2025). Heart rate variability applications in medical specialties: A narrative review. Applied Psychophysiology and Biofeedback, 50(3), 359–381. https://doi.org/10.1007/s10484-025-09708-y

Sarkar, S., & Ghosh, A. (2023). Schrödinger spectrum based continuous cuff-less blood pressure estimation using clinically relevant features from PPG signal and its second derivative. Computers in Biology and Medicine, 166, 107558. https://doi.org/10.1016/j.compbiomed.2023.107558

Johnson, K. W., Torres Soto, J., Glicksberg, B. S., Shameer, K., Miotto, R., Ali, M., Ashley, E., & Dudley, J. T. (2018). Artificial intelligence in cardiology. Journal of the American College of Cardiology, 71(23), 2668–2679. https://doi.org/10.1016/j.jacc.2018.03.521

Battelino, T., Danne, T., Bergenstal, R. M., et al. (2019). Clinical targets for continuous glucose monitoring data interpretation: Recommendations from the International Consensus on Time in Range. Diabetes Care, 42(8), 1593–1603. https://doi.org/10.2337/dci19-0028

Polonsky, W. H., Hessler, D., Ruedy, K. J., & Beck, R. W.; DIAMOND Study Group. (2017). The impact of continuous glucose monitoring on markers of quality of life in adults with type 1 diabetes: Further findings from the DIAMOND randomized clinical trial. Diabetes Care, 40(6), 736–741. https://doi.org/10.2337/dc17-0133

Gilbert, T. R., Noar, A., Blalock, O., & Polonsky, W. H. (2021). Change in hemoglobin A1c and quality of life with real-time continuous glucose monitoring use by people with insulin-treated diabetes in the Landmark study. Diabetes Technology & Therapeutics, 23(S1), S35–S39. https://doi.org/10.1089/dia.2020.0666

Global Initiative for Chronic Obstructive Lung Disease (GOLD). (2024). Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: 2024 Report. Global Initiative for Chronic Obstructive Lung Disease. https://goldcopd.org/2024-gold-report/

Shah, A. J., Althobiani, M. A., Saigal, A., Ogbonnaya, C. E., Hurst, J. R., & Mandal, S. (2023). Wearable technology interventions in patients with chronic obstructive pulmonary disease: A systematic review and meta-analysis. NPJ Digital Medicine, 6(1), 222. https://doi.org/10.1038/s41746-023-00962-0

Oliveira, T. R. A., Fernandes, A. T. D. N. S. F., Santino, T. A., Menescal, F. E. P. D. S., & Nogueira, P. A. M. S. (2024). Effects of using wearable devices to monitor physical activity in pulmonary rehabilitation programs for chronic respiratory diseases: A systematic review protocol. PLoS ONE, 19(7), e0308109. https://doi.org/10.1371/journal.pone.0308109

Chen, G., Shen, S., Tat, T., et al. (2022). Wearable respiratory sensors for COVID-19 monitoring. View (Beijing), 3(5), 20220024. https://doi.org/10.1002/VIW.20220024

Godinho, C., Domingos, J., Cunha, G., et al. (2016). A systematic review of the characteristics and validity of monitoring technologies to assess Parkinson’s disease. Journal of NeuroEngineering and Rehabilitation, 13, 24. https://doi.org/10.1186/s12984-016-0136-7

Bougea, A. (2024). Digital biomarkers in Parkinson’s disease. Advances in Clinical Chemistry, 123, 221–253. https://doi.org/10.1016/bs.acc.2024.06.005

Ma, Y., Zhang, Y., Li, R., Cheng, W., & Wu, F. (2025). The experience and perception of wearable devices in Parkinson’s disease patients: A systematic review and meta-synthesis of qualitative studies. Journal of Neurology, 272(5), 350. https://doi.org/10.1007/s00415-025-13085-1

Iino, H., Kizaki, H., Imai, S., & Hori, S. (2024). Medication management initiatives using wearable devices: Scoping review. JMIR Human Factors, 11, e57652. https://doi.org/10.2196/57652

Kim, S. K., Park, S. Y., Hwang, H. R., Moon, S. H., & Park, J. W. (2025). Effectiveness of mobile health intervention in medication adherence: A systematic review and meta-analysis. Journal of Medical Systems, 49(1), 13. https://doi.org/10.1007/s10916-024-02135-2

Nebeker, C., Harlow, J., Espinoza Giacinto, R., Orozco-Linares, R., Bloss, C. S., & Weibel, N. (2017). Ethical and regulatory challenges of research using pervasive sensing and other emerging technologies: IRB perspectives. AJOB Empirical Bioethics, 8(4), 266–276. https://doi.org/10.1080/23294515.2017.1403980

Bouderhem, R. (2023). Privacy and regulatory issues in wearable health technology. Engineering Proceedings, 58(1), 87. https://doi.org/10.3390/ecsa-10-1620

Wang, B., Zhang, L., & Asan, O. (2024). The impact of wearable devices on health management: Insights from consumers’ data. Proceedings of the International Symposium on Human Factors and Ergonomics in Health Care, 13, 175–180. https://doi.org/10.1177/2327857924131007

Daniore, P., Nittas, V., Haag, C., et al. (2024). From wearable sensor data to digital biomarker development: Ten lessons learned and a framework proposal. NPJ Digital Medicine, 7, 161. https://doi.org/10.1038/s41746-024-01151-3

Abdelaal, Y., Aupetit, M., Baggag, A., & Al-Thani, D. (2024). Exploring the applications of explainability in wearable data analytics: Systematic literature review. Journal of Medical Internet Research, 26, e53863. https://doi.org/10.2196/53863

De Sario Velasquez, G. D., Borna, S., Maniaci, M. J., et al. (2024). Economic perspective of the use of wearables in health care: A systematic review. Mayo Clinic Proceedings: Digital Health, 2(3), 299–317https://doi.org/10.1016/j.mcpdig.2024.05.003

Nam, D., Cha, J. M., & Park, K. (2021). Next-generation wearable biosensors developed with flexible bio-chips. Micromachines (Basel), 12(1), 64. https://doi.org/10.3390/mi12010064

Nelson, J., & Charlotte, J. (2025). AI-driven predictive models for chronic disease management. [Manuscript in preparation / Preprint].

Jha, S., & Topol, E. J. (2023). Upending the model of AI adoption. The Lancet, 401(10392), 1920. https://doi.org/10.1016/S0140-6736(23)01136-4

Laubenbacher, R., Niarakis, A., Helikar, T., An, G., Shapiro, B., Malik-Sheriff, R. S., Sego, T. J., Knapp, A., Macklin, P., & Glazier, J. A. (2022). Building digital twins of the human immune system: toward a roadmap. NPJ digital medicine, 5(1), 64. https://doi.org/10.1038/s41746-022-00610-z

Adenekan, T. (2025). Integration of wearable device data into predictive health analytics systems. [Unpublished manuscript / Preprint].

Coravos, A., Khozin, S., & Mandl, K. D. (2019). Developing and adopting safe and effective digital biomarkers to improve patient outcomes. NPJ Digital Medicine, 2(1), 14. https://doi.org/10.1038/s41746-019-0090-4

Flores, M., Glusman, G., Brogaard, K., Price, N. D., & Hood, L. (2013). P4 medicine: How systems medicine will transform the healthcare sector and society. Personalized Medicine, 10(6), 565–576. https://doi.org/10.2217/pme.13.57

Vayena, E., & Blasimme, A. (2017). Biomedical big data: New models of control over access, use and governance. Journal of Bioethical Inquiry, 14(4), 501–513. https://doi.org/10.1007/s11673-017-9809-6

Svensson, E., Osika, W., & Carlbring, P. (2025). Commentary: Trustworthy and ethical AI in digital mental healthcare—Wishful thinking or tangible goal? Internet Interventions, 41, 100844. https://doi.org/10.1016/j.invent.2025.100844

Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science (New York, N.Y.), 366(6464), 447–453. https://doi.org/10.1126/science.aax2342

World Health Organization. (2021). Global strategy on digital health 2020–2025. World Health Organization. https://www.who.int/publications/i/item/9789240020924

Schwalbe, N., & Wahl, B. (2020). Artificial intelligence and the future of global health. The Lancet, 395(10236), 1579–1586. https://doi.org/10.1016/S0140-6736(20)30226-9

Views:

34

Downloads:

26

Published
2025-12-15
Citations
How to Cite
Mateusz Mierniczek, Maria Mierniczek, Aleksandra Mierniczek, Kinga Kaczmarska, Kinga Rosołowska, & Jarosław Dudek. (2025). WEARABLE HEALTH TECHNOLOGIES IN CHRONIC DISEASE MANAGEMENT: CURRENT APPLICATIONS, BARRIERS, AND FUTURE PERSPECTIVES. International Journal of Innovative Technologies in Social Science, (4(48). https://doi.org/10.31435/ijitss.4(48).2025.4201