SKIN MICROBIOME IN SEBORRHEIC DERMATITIS: PATHOGENESIS, THERAPEUTIC IMPLICATIONS, AND ENVIRONMENTAL MODULATION OF DYSBIOSIS
Abstract
Seborrheic dermatitis (SD) is one of the most commonly diagnosed inflammatory dermatoses. In recent years, the approach to the pathogenesis of SD has been expanded beyond the model describing the proliferation of fungi of the genus Malassezia as the main initiating factor. More recent studies have indicated that one of the key mechanisms is the loss of diversity of the skin microbiota, which enables the dominance of microorganisms promoting the exacerbation of disease lesions. Current reports emphasize the impact of disturbances in the composition of the skin microbiota, impairment of the epidermal barrier, and the host immune response as a complex pathomechanism. In parallel, the literature provides numerous lines of evidence indicating that environmental factors, such as pollution and lifestyle, may actively affect the skin microbiome, promoting its dysbiosis. Consequently, the environment may be considered as one of the factors actively modulating the disease and an important element in the context of personalized therapy aimed at maintaining microbiological balance.
The aim of this study is to present current research describing the impact of environmental factors on the development of skin dysbiosis and to discuss a perspective focused on restoring the balance of the skin microbiota and its protective mechanisms as a potential element positively influencing the clinical presentation in patients with seborrheic dermatitis. Disruption of the skin microbiome balance constitutes a key element in the pathogenesis of seborrheic dermatitis, which justifies a therapeutic approach aimed at restoring microbiological homeostasis in order to achieve and maintain disease remission.
References
Adalsteinsson, J. A., Kaushik, S., Muzumdar, S., Guttman-Yassky, E., & Ungar, J. (2020). An update on the microbiology, immunology and genetics of seborrheic dermatitis. Exp Dermatol, 29(5), 481-489. https://doi.org/10.1111/exd.14091
Akbaş, A., Kılınç, F., Şener, S., & Hayran, Y. (2022). Investigation of the relationship between seborrheic dermatitis and metabolic syndrome parameters. J Cosmet Dermatol, 21(11), 6079-6085. https://doi.org/10.1111/jocd.15121
Akbulut, T. O., Suslu, H., & Atci, T. (2022). Is the Frequency of Seborrheic Dermatitis Related to Climate Parameters? Sisli Etfal Hastan Tip Bul, 56(1), 91-95. https://doi.org/10.14744/SEMB.2021.67503
Alshaebi, M., Zahed, L., Osaylan, M., Sulaimani, S., Albahlool, A., Abduljabbar, M. H., & Hariri, J. (2023). Association Between Diet and Seborrheic Dermatitis: A Case-Control Study. Cureus, 15(11), e48782. https://doi.org/10.7759/cureus.48782
Ambaw, Y. A., Pagac, M. P., Irudayaswamy, A. S., Raida, M., Bendt, A. K., Torta, F. T.,…Dawson, T. L. (2021). Host/. Metabolites, 11(10). https://doi.org/10.3390/metabo11100700
Ashbee, H. R., & Evans, E. G. (2002). Immunology of diseases associated with Malassezia species. Clin Microbiol Rev, 15(1), 21-57. https://doi.org/10.1128/CMR.15.1.21-57.2002
Barber, T. M., Kabisch, S., Pfeiffer, A. F. H., & Weickert, M. O. (2023). The Effects of the Mediterranean Diet on Health and Gut Microbiota. Nutrients, 15(9). https://doi.org/10.3390/nu15092150
Boonpethkaew, S., Charoensuksira, S., Meephansan, J., Sirithanabadeekul, P., Chueachavalit, C., Ingkaninanda, P.,…Payungporn, S. (2024). The influence of air pollution on skin microbiome: a link to skin barrier dysfunction. Arch Dermatol Res, 316(10), 710. https://doi.org/10.1007/s00403-024-03448-5
Byrd, A. L., Belkaid, Y., & Segre, J. A. (2018). The human skin microbiome. Nat Rev Microbiol, 16(3), 143-155. https://doi.org/10.1038/nrmicro.2017.157
Cassola, F., Ramírez, N., Delarmelina, C., & Duarte, M. C. T. (2024). In vitro determination of the susceptibility of Malassezia furfur biofilm to different commercially used antimicrobials. APMIS, 132(12), 1106-1114. https://doi.org/10.1111/apm.13419
Chen, P., Zhang, Y., Zhang, T., Li, J., Shen, M., Mao, R., & Zhang, C. (2024). Association of air pollution with incidence of late-onset seborrhoeic dermatitis: a prospective cohort study in UK Biobank. Clin Exp Dermatol, 49(10), 1164-1170. https://doi.org/10.1093/ced/llae122
Cheng, Y., Cong, J., Xu, J., Tang, L., Zhou, Z., Yang, X.,…Xiang, Q. (2025). Research Progress on the Exacerbation of Lipid Metabolism by Malassezia and Its Impact on the Skin Barrier Function. Cosmetics, 12(2), 67.
Christou, D., Stevanovic, K., Evers, S., Weide, M., & Zuberbier, T. (2024). Evaluating the Impact of Laundry Detergents on the Skin Microbiome of Atopic Dermatitis Patients-A Clinical Study. Health Sci Rep, 7(12), e70261. https://doi.org/10.1002/hsr2.70261
Clavaud, C., Jourdain, R., Bar-Hen, A., Tichit, M., Bouchier, C., Pouradier, F.,…Mouyna, I. (2013). Dandruff is associated with disequilibrium in the proportion of the major bacterial and fungal populations colonizing the scalp. PLoS One, 8(3), e58203. https://doi.org/10.1371/journal.pone.0058203
Dall'Oglio, F., Nasca, M. R., Gerbino, C., & Micali, G. (2022). An Overview of the Diagnosis and Management of Seborrheic Dermatitis. Clin Cosmet Investig Dermatol, 15, 1537-1548. https://doi.org/10.2147/CCID.S284671
De Pessemier, B., Grine, L., Debaere, M., Maes, A., Paetzold, B., & Callewaert, C. (2021). Gut-Skin Axis: Current Knowledge of the Interrelationship between Microbial Dysbiosis and Skin Conditions. Microorganisms, 9(2). https://doi.org/10.3390/microorganisms9020353
Dessinioti, C., & Katsambas, A. (2013). Seborrheic dermatitis: etiology, risk factors, and treatments: facts and controversies. Clin Dermatol, 31(4), 343-351. https://doi.org/10.1016/j.clindermatol.2013.01.001
Fadadu, R. P., Abuabara, K., Balmes, J. R., Hanifin, J. M., & Wei, M. L. (2023). Air Pollution and Atopic Dermatitis, from Molecular Mechanisms to Population-Level Evidence: A Review. Int J Environ Res Public Health, 20(3). https://doi.org/10.3390/ijerph20032526
Grice, E. A., & Segre, J. A. (2011). The skin microbiome. Nat Rev Microbiol, 9(4), 244-253. https://doi.org/10.1038/nrmicro2537
Gupta, A. K., Bluhm, R., Cooper, E. A., Summerbell, R. C., & Batra, R. (2003). Seborrheic dermatitis. Dermatol Clin, 21(3), 401-412. https://doi.org/10.1016/s0733-8635(03)00028-7
Hon, K. L., Wang, S. S., Hung, E. C., Lam, H. S., Lui, H. H., Chow, C. M.,…Leung, T. F. (2010). Serum levels of heavy metals in childhood eczema and skin diseases: friends or foes. Pediatr Allergy Immunol, 21(5), 831-836. https://doi.org/10.1111/j.1399-3038.2010.01022.x
Imamoglu, B., Hayta, S. B., Guner, R., Akyol, M., & Ozcelik, S. (2016). Metabolic syndrome may be an important comorbidity in patients with seborrheic dermatitis. Arch Med Sci Atheroscler Dis, 1(1), e158-e161. https://doi.org/10.5114/amsad.2016.65075
Jia, Q., Hu, J., Wang, X., Deng, Y., Zhang, J., & Li, H. (2024). Malassezia globosa Induces Differentiation of Pathogenic Th17 Cells by Inducing IL-23 Secretion by Keratinocytes. Mycopathologia, 189(5), 85. https://doi.org/10.1007/s11046-024-00890-x
Kim, B. E., Kim, J., Goleva, E., Berdyshev, E., Lee, J., Vang, K. A.,…Ahn, K. (2021). Particulate matter causes skin barrier dysfunction. JCI Insight, 6(5). https://doi.org/10.1172/jci.insight.145185
Kováčik, A., Kopečná, M., Hrdinová, I., Opálka, L., Boncheva Bettex, M., & Vávrová, K. (2023). Time-Dependent Differences in the Effects of Oleic Acid and Oleyl Alcohol on the Human Skin Barrier. Mol Pharm, 20(12), 6237-6245. https://doi.org/10.1021/acs.molpharmaceut.3c00648
Leung, M. H. Y., Tong, X., Bastien, P., Guinot, F., Tenenhaus, A., Appenzeller, B. M. R.,…Lee, P. K. H. (2020). Changes of the human skin microbiota upon chronic exposure to polycyclic aromatic hydrocarbon pollutants. Microbiome, 8(1), 100. https://doi.org/10.1186/s40168-020-00874-1
Leung, M. H. Y., Tong, X., Shen, Z., Du, S., Bastien, P., Appenzeller, B. M. R.,…Lee, P. K. H. (2023). Skin microbiome differentiates into distinct cutotypes with unique metabolic functions upon exposure to polycyclic aromatic hydrocarbons. Microbiome, 11(1), 124. https://doi.org/10.1186/s40168-023-01564-4
Lin, Q., Panchamukhi, A., Li, P., Shan, W., Zhou, H., Hou, L., & Chen, W. (2021). Malassezia and Staphylococcus dominate scalp microbiome for seborrheic dermatitis. Bioprocess Biosyst Eng, 44(5), 965-975. https://doi.org/10.1007/s00449-020-02333-5
Mack Correa, M. C., Mao, G., Saad, P., Flach, C. R., Mendelsohn, R., & Walters, R. M. (2014). Molecular interactions of plant oil components with stratum corneum lipids correlate with clinical measures of skin barrier function. Exp Dermatol, 23(1), 39-44. https://doi.org/10.1111/exd.12296
Mahmoudi, E., & Rezaie, J. (2020). Isolation of different fungi from the skin of patients with seborrheic dermatitis. Curr Med Mycol, 6(2), 49-51. https://doi.org/10.18502/CMM.6.2.2841
Massiot, P., Clavaud, C., Thomas, M., Ott, A., Guéniche, A., Panhard, S.,…Reygagne, P. (2022). Continuous clinical improvement of mild-to-moderate seborrheic dermatitis and rebalancing of the scalp microbiome using a selenium disulfide-based shampoo after an initial treatment with ketoconazole. J Cosmet Dermatol, 21(5), 2215-2225. https://doi.org/10.1111/jocd.14362
Maître, M., Baradat, S., Froliger, M., Turlier, V., Simcic-Mori, A., Gravier, E.,…Duplan, H. (2025). Scalp Microbiome Dynamics Can Contribute to the Clinical Effect of a Novel Antiseborrheic Dermatitis Shampoo Containing Patented Antifungal Actives: A Randomized Controlled Study. Dermatol Ther (Heidelb), 15(8), 2077-2097. https://doi.org/10.1007/s13555-025-01408-z
Navarro Triviño, F. J., Velasco Amador, J. P., & Rivera Ruiz, I. (2025). Seborrheic Dermatitis Revisited: Pathophysiology, Diagnosis, and Emerging Therapies-A Narrative Review. Biomedicines, 13(10). https://doi.org/10.3390/biomedicines13102458
Ozcan, Y., Sungur, M. A., Ozcan, B. Y., Eyup, Y., & Ozlu, E. (2023). The Psychosocial Impact of Chronic Facial Dermatoses in Adults. Dermatol Pract Concept, 13(1). https://doi.org/10.5826/dpc.1301a29
Park, H. R., Oh, J. H., Lee, Y. J., Park, S. H., Lee, Y. W., Lee, S.,…Kim, J. E. (2021). Inflammasome-mediated Inflammation by Malassezia in human keratinocytes: A comparative analysis with different strains. Mycoses, 64(3), 292-299. https://doi.org/10.1111/myc.13214
Park, M., Park, S., & Jung, W. H. (2021). Skin Commensal Fungus. J Microbiol Biotechnol, 31(5), 637-644. https://doi.org/10.4014/jmb.2012.12048
Park, T., Kim, H. J., Myeong, N. R., Lee, H. G., Kwack, I., Lee, J.,…An, S. (2017). Collapse of human scalp microbiome network in dandruff and seborrhoeic dermatitis. Exp Dermatol, 26(9), 835-838. https://doi.org/10.1111/exd.13293
Polaskey, M. T., Chang, C. H., Daftary, K., Fakhraie, S., Miller, C. H., & Chovatiya, R. (2024). The Global Prevalence of Seborrheic Dermatitis: A Systematic Review and Meta-Analysis. JAMA Dermatol, 160(8), 846-855. https://doi.org/10.1001/jamadermatol.2024.1987
Prajapati, S. K., Lekkala, L., Yadav, D., Jain, S., & Yadav, H. (2025). Microbiome and Postbiotics in Skin Health. Biomedicines, 13(4). https://doi.org/10.3390/biomedicines13040791
Prescott, S. L., Larcombe, D. L., Logan, A. C., West, C., Burks, W., Caraballo, L.,…Campbell, D. E. (2017). The skin microbiome: impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organ J, 10(1), 29. https://doi.org/10.1186/s40413-017-0160-5
Rinaldi, A. O., Li, M., Barletta, E., D'Avino, P., Yazici, D., Pat, Y.,…Mitamura, Y. (2024). Household laundry detergents disrupt barrier integrity and induce inflammation in mouse and human skin. Allergy, 79(1), 128-141. https://doi.org/10.1111/all.15891
Rušanac, A., Škibola, Z., Matijašić, M., Čipčić Paljetak, H., & Perić, M. (2025). Microbiome-Based Products: Therapeutic Potential for Inflammatory Skin Diseases. Int J Mol Sci, 26(14). https://doi.org/10.3390/ijms26146745
Ryczaj, K., Beken, B., & Akdis, C. (2025). Feeding the Skin Barrier: The Impact of Macro- and Micronutrients on Skin Barrier Function. Clin Transl Allergy, 15(11), e70105. https://doi.org/10.1002/clt2.70105
Sanders, M. G. H., Nijsten, T., Verlouw, J., Kraaij, R., & Pardo, L. M. (2021). Composition of cutaneous bacterial microbiome in seborrheic dermatitis patients: A cross-sectional study. PLoS One, 16(5), e0251136. https://doi.org/10.1371/journal.pone.0251136
Sanders, M. G. H., Pardo, L. M., Ginger, R. S., Kiefte-de Jong, J. C., & Nijsten, T. (2019). Association between Diet and Seborrheic Dermatitis: A Cross-Sectional Study. J Invest Dermatol, 139(1), 108-114. https://doi.org/10.1016/j.jid.2018.07.027
Saxena, R., Mittal, P., Clavaud, C., Dhakan, D. B., Hegde, P., Veeranagaiah, M. M.,…Sharma, V. K. (2018). Comparison of Healthy and Dandruff Scalp Microbiome Reveals the Role of Commensals in Scalp Health. Front Cell Infect Microbiol, 8, 346. https://doi.org/10.3389/fcimb.2018.00346
Semiz, Y., & Aktaş, E. (2025). Investigating the role of dietary glycemic factors and antioxidant capacity, metabolic status, and oxidative stress in seborrheic dermatitis: A case-control study. J Am Acad Dermatol, 92(3), 503-510. https://doi.org/10.1016/j.jaad.2024.10.078
Sfriso, R., & Claypool, J. (2020). Microbial Reference Frames Reveal Distinct Shifts in the Skin Microbiota after Cleansing. Microorganisms, 8(11). https://doi.org/10.3390/microorganisms8111634
Skowron, K., Bauza-Kaszewska, J., Kraszewska, Z., Wiktorczyk-Kapischke, N., Grudlewska-Buda, K., Kwiecińska-Piróg, J.,…Gospodarek-Komkowska, E. (2021). Human Skin Microbiome: Impact of Intrinsic and Extrinsic Factors on Skin Microbiota. Microorganisms, 9(3). https://doi.org/10.3390/microorganisms9030543
Tai, M., He, Q., Lv, P., Li, W., Ling, X., Li, L., & Guo, M. (2025). Madecassoside alleviates PM. Biochem Biophys Res Commun, 770, 151977. https://doi.org/10.1016/j.bbrc.2025.151977
Tajima, M., Sugita, T., Nishikawa, A., & Tsuboi, R. (2008). Molecular analysis of Malassezia microflora in seborrheic dermatitis patients: comparison with other diseases and healthy subjects. J Invest Dermatol, 128(2), 345-351. https://doi.org/10.1038/sj.jid.5701017
Tanaka, A., Cho, O., Saito, M., Tsuboi, R., Kurakado, S., & Sugita, T. (2014). Molecular Characterization of the Skin Fungal Microbiota in Patients with Seborrheic Dermatitis. Journal of clinical & experimental dermatology research, 5, 1-4.
Tao, R., Li, R., & Wang, R. (2023). Comparative analysis of the facial microbiome between rosacea and seborrheic dermatitis. Indian J Dermatol Venereol Leprol, 89(6), 891-893. https://doi.org/10.25259/IJDVL_215_2022
Truglio, M., Sivori, F., Cavallo, I., Abril, E., Licursi, V., Fabrizio, G.,…Di Domenico, E. G. (2024). Modulating the skin mycobiome-bacteriome and treating seborrheic dermatitis with a probiotic-enriched oily suspension. Sci Rep, 14(1), 2722. https://doi.org/10.1038/s41598-024-53016-0
Tynes, B. E., Johnson, C. D., Vaish, M. H., Abbott, B., Vučenović, J., Varrassi, G.,…Kaye, A. D. (2024). Ketoconazole Shampoo for Seborrheic Dermatitis of the Scalp: A Narrative Review. Cureus, 16(8), e67532. https://doi.org/10.7759/cureus.67532
Wang, Y., Li, J., Wu, J., Gu, S., Hu, H., Cai, R.,…Zou, Y. (2023). Effects of a Postbiotic. Clin Cosmet Investig Dermatol, 16, 2623-2635. https://doi.org/10.2147/CCID.S415787
Woolhiser, E., Keime, N., Patel, A., Weber, I., Adelman, M., & Dellavalle, R. P. (2024). Nutrition, Obesity, and Seborrheic Dermatitis: Systematic Review. JMIR Dermatol, 7, e50143. https://doi.org/10.2196/50143
Wu, G., Zhao, H., Li, C., Rajapakse, M. P., Wong, W. C., Xu, J.,…Dawson, T. L. (2015). Genus-Wide Comparative Genomics of Malassezia Delineates Its Phylogeny, Physiology, and Niche Adaptation on Human Skin. PLoS Genet, 11(11), e1005614. https://doi.org/10.1371/journal.pgen.1005614
Xu, Z., Wang, Z., Yuan, C., Liu, X., Yang, F., Wang, T.,…Zhang, M. (2016). Dandruff is associated with the conjoined interactions between host and microorganisms. Sci Rep, 6, 24877. https://doi.org/10.1038/srep24877
Zhao, H., Yu, F., Wang, C., Han, Z., Liu, S., Chen, D.,…Huang, Z. (2024). The impacts of sodium lauroyl sarcosinate in facial cleanser on facial skin microbiome and lipidome. J Cosmet Dermatol, 23(4), 1351-1359. https://doi.org/10.1111/jocd.16092
Zheng, Y., Hunt, R. L., Villaruz, A. E., Fisher, E. L., Liu, R., Liu, Q.,…Otto, M. (2022). Commensal Staphylococcus epidermidis contributes to skin barrier homeostasis by generating protective ceramides. Cell Host Microbe, 30(3), 301-313.e309. https://doi.org/10.1016/j.chom.2022.01.004
Copyright (c) 2026 Oliwia Jerzyńska, Miszela Kałachurska, Martyna Rożek, Maria Nowakowska, Aleksandra Kowalewska-Kurek, Aleksandra Lisowska, Bartosz Nowak, Maria Sierant, Mateusz Gural, Constancia Esther Guy

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

