SKIN MICROBIOME IN SEBORRHEIC DERMATITIS: PATHOGENESIS, THERAPEUTIC IMPLICATIONS, AND ENVIRONMENTAL MODULATION OF DYSBIOSIS

Keywords: Seborrheic Dermatitis, Skin Microbiome, Malassezia, Dysbiosis, Epidermal Barrier, Environmental Factors

Abstract

Seborrheic dermatitis (SD) is one of the most commonly diagnosed inflammatory dermatoses. In recent years, the approach to the pathogenesis of SD has been expanded beyond the model describing the proliferation of fungi of the genus Malassezia as the main initiating factor. More recent studies have indicated that one of the key mechanisms is the loss of diversity of the skin microbiota, which enables the dominance of microorganisms promoting the exacerbation of disease lesions. Current reports emphasize the impact of disturbances in the composition of the skin microbiota, impairment of the epidermal barrier, and the host immune response as a complex pathomechanism. In parallel, the literature provides numerous lines of evidence indicating that environmental factors, such as pollution and lifestyle, may actively affect the skin microbiome, promoting its dysbiosis. Consequently, the environment may be considered as one of the factors actively modulating the disease and an important element in the context of personalized therapy aimed at maintaining microbiological balance.

The aim of this study is to present current research describing the impact of environmental factors on the development of skin dysbiosis and to discuss a perspective focused on restoring the balance of the skin microbiota and its protective mechanisms as a potential element positively influencing the clinical presentation in patients with seborrheic dermatitis. Disruption of the skin microbiome balance constitutes a key element in the pathogenesis of seborrheic dermatitis, which justifies a therapeutic approach aimed at restoring microbiological homeostasis in order to achieve and maintain disease remission.

References

Adalsteinsson, J. A., Kaushik, S., Muzumdar, S., Guttman-Yassky, E., & Ungar, J. (2020). An update on the microbiology, immunology and genetics of seborrheic dermatitis. Exp Dermatol, 29(5), 481-489. https://doi.org/10.1111/exd.14091

Akbaş, A., Kılınç, F., Şener, S., & Hayran, Y. (2022). Investigation of the relationship between seborrheic dermatitis and metabolic syndrome parameters. J Cosmet Dermatol, 21(11), 6079-6085. https://doi.org/10.1111/jocd.15121

Akbulut, T. O., Suslu, H., & Atci, T. (2022). Is the Frequency of Seborrheic Dermatitis Related to Climate Parameters? Sisli Etfal Hastan Tip Bul, 56(1), 91-95. https://doi.org/10.14744/SEMB.2021.67503

Alshaebi, M., Zahed, L., Osaylan, M., Sulaimani, S., Albahlool, A., Abduljabbar, M. H., & Hariri, J. (2023). Association Between Diet and Seborrheic Dermatitis: A Case-Control Study. Cureus, 15(11), e48782. https://doi.org/10.7759/cureus.48782

Ambaw, Y. A., Pagac, M. P., Irudayaswamy, A. S., Raida, M., Bendt, A. K., Torta, F. T.,…Dawson, T. L. (2021). Host/. Metabolites, 11(10). https://doi.org/10.3390/metabo11100700

Ashbee, H. R., & Evans, E. G. (2002). Immunology of diseases associated with Malassezia species. Clin Microbiol Rev, 15(1), 21-57. https://doi.org/10.1128/CMR.15.1.21-57.2002

Barber, T. M., Kabisch, S., Pfeiffer, A. F. H., & Weickert, M. O. (2023). The Effects of the Mediterranean Diet on Health and Gut Microbiota. Nutrients, 15(9). https://doi.org/10.3390/nu15092150

Boonpethkaew, S., Charoensuksira, S., Meephansan, J., Sirithanabadeekul, P., Chueachavalit, C., Ingkaninanda, P.,…Payungporn, S. (2024). The influence of air pollution on skin microbiome: a link to skin barrier dysfunction. Arch Dermatol Res, 316(10), 710. https://doi.org/10.1007/s00403-024-03448-5

Byrd, A. L., Belkaid, Y., & Segre, J. A. (2018). The human skin microbiome. Nat Rev Microbiol, 16(3), 143-155. https://doi.org/10.1038/nrmicro.2017.157

Cassola, F., Ramírez, N., Delarmelina, C., & Duarte, M. C. T. (2024). In vitro determination of the susceptibility of Malassezia furfur biofilm to different commercially used antimicrobials. APMIS, 132(12), 1106-1114. https://doi.org/10.1111/apm.13419

Chen, P., Zhang, Y., Zhang, T., Li, J., Shen, M., Mao, R., & Zhang, C. (2024). Association of air pollution with incidence of late-onset seborrhoeic dermatitis: a prospective cohort study in UK Biobank. Clin Exp Dermatol, 49(10), 1164-1170. https://doi.org/10.1093/ced/llae122

Cheng, Y., Cong, J., Xu, J., Tang, L., Zhou, Z., Yang, X.,…Xiang, Q. (2025). Research Progress on the Exacerbation of Lipid Metabolism by Malassezia and Its Impact on the Skin Barrier Function. Cosmetics, 12(2), 67.

Christou, D., Stevanovic, K., Evers, S., Weide, M., & Zuberbier, T. (2024). Evaluating the Impact of Laundry Detergents on the Skin Microbiome of Atopic Dermatitis Patients-A Clinical Study. Health Sci Rep, 7(12), e70261. https://doi.org/10.1002/hsr2.70261

Clavaud, C., Jourdain, R., Bar-Hen, A., Tichit, M., Bouchier, C., Pouradier, F.,…Mouyna, I. (2013). Dandruff is associated with disequilibrium in the proportion of the major bacterial and fungal populations colonizing the scalp. PLoS One, 8(3), e58203. https://doi.org/10.1371/journal.pone.0058203

Dall'Oglio, F., Nasca, M. R., Gerbino, C., & Micali, G. (2022). An Overview of the Diagnosis and Management of Seborrheic Dermatitis. Clin Cosmet Investig Dermatol, 15, 1537-1548. https://doi.org/10.2147/CCID.S284671

De Pessemier, B., Grine, L., Debaere, M., Maes, A., Paetzold, B., & Callewaert, C. (2021). Gut-Skin Axis: Current Knowledge of the Interrelationship between Microbial Dysbiosis and Skin Conditions. Microorganisms, 9(2). https://doi.org/10.3390/microorganisms9020353

Dessinioti, C., & Katsambas, A. (2013). Seborrheic dermatitis: etiology, risk factors, and treatments: facts and controversies. Clin Dermatol, 31(4), 343-351. https://doi.org/10.1016/j.clindermatol.2013.01.001

Fadadu, R. P., Abuabara, K., Balmes, J. R., Hanifin, J. M., & Wei, M. L. (2023). Air Pollution and Atopic Dermatitis, from Molecular Mechanisms to Population-Level Evidence: A Review. Int J Environ Res Public Health, 20(3). https://doi.org/10.3390/ijerph20032526

Grice, E. A., & Segre, J. A. (2011). The skin microbiome. Nat Rev Microbiol, 9(4), 244-253. https://doi.org/10.1038/nrmicro2537

Gupta, A. K., Bluhm, R., Cooper, E. A., Summerbell, R. C., & Batra, R. (2003). Seborrheic dermatitis. Dermatol Clin, 21(3), 401-412. https://doi.org/10.1016/s0733-8635(03)00028-7

Hon, K. L., Wang, S. S., Hung, E. C., Lam, H. S., Lui, H. H., Chow, C. M.,…Leung, T. F. (2010). Serum levels of heavy metals in childhood eczema and skin diseases: friends or foes. Pediatr Allergy Immunol, 21(5), 831-836. https://doi.org/10.1111/j.1399-3038.2010.01022.x

Imamoglu, B., Hayta, S. B., Guner, R., Akyol, M., & Ozcelik, S. (2016). Metabolic syndrome may be an important comorbidity in patients with seborrheic dermatitis. Arch Med Sci Atheroscler Dis, 1(1), e158-e161. https://doi.org/10.5114/amsad.2016.65075

Jia, Q., Hu, J., Wang, X., Deng, Y., Zhang, J., & Li, H. (2024). Malassezia globosa Induces Differentiation of Pathogenic Th17 Cells by Inducing IL-23 Secretion by Keratinocytes. Mycopathologia, 189(5), 85. https://doi.org/10.1007/s11046-024-00890-x

Kim, B. E., Kim, J., Goleva, E., Berdyshev, E., Lee, J., Vang, K. A.,…Ahn, K. (2021). Particulate matter causes skin barrier dysfunction. JCI Insight, 6(5). https://doi.org/10.1172/jci.insight.145185

Kováčik, A., Kopečná, M., Hrdinová, I., Opálka, L., Boncheva Bettex, M., & Vávrová, K. (2023). Time-Dependent Differences in the Effects of Oleic Acid and Oleyl Alcohol on the Human Skin Barrier. Mol Pharm, 20(12), 6237-6245. https://doi.org/10.1021/acs.molpharmaceut.3c00648

Leung, M. H. Y., Tong, X., Bastien, P., Guinot, F., Tenenhaus, A., Appenzeller, B. M. R.,…Lee, P. K. H. (2020). Changes of the human skin microbiota upon chronic exposure to polycyclic aromatic hydrocarbon pollutants. Microbiome, 8(1), 100. https://doi.org/10.1186/s40168-020-00874-1

Leung, M. H. Y., Tong, X., Shen, Z., Du, S., Bastien, P., Appenzeller, B. M. R.,…Lee, P. K. H. (2023). Skin microbiome differentiates into distinct cutotypes with unique metabolic functions upon exposure to polycyclic aromatic hydrocarbons. Microbiome, 11(1), 124. https://doi.org/10.1186/s40168-023-01564-4

Lin, Q., Panchamukhi, A., Li, P., Shan, W., Zhou, H., Hou, L., & Chen, W. (2021). Malassezia and Staphylococcus dominate scalp microbiome for seborrheic dermatitis. Bioprocess Biosyst Eng, 44(5), 965-975. https://doi.org/10.1007/s00449-020-02333-5

Mack Correa, M. C., Mao, G., Saad, P., Flach, C. R., Mendelsohn, R., & Walters, R. M. (2014). Molecular interactions of plant oil components with stratum corneum lipids correlate with clinical measures of skin barrier function. Exp Dermatol, 23(1), 39-44. https://doi.org/10.1111/exd.12296

Mahmoudi, E., & Rezaie, J. (2020). Isolation of different fungi from the skin of patients with seborrheic dermatitis. Curr Med Mycol, 6(2), 49-51. https://doi.org/10.18502/CMM.6.2.2841

Massiot, P., Clavaud, C., Thomas, M., Ott, A., Guéniche, A., Panhard, S.,…Reygagne, P. (2022). Continuous clinical improvement of mild-to-moderate seborrheic dermatitis and rebalancing of the scalp microbiome using a selenium disulfide-based shampoo after an initial treatment with ketoconazole. J Cosmet Dermatol, 21(5), 2215-2225. https://doi.org/10.1111/jocd.14362

Maître, M., Baradat, S., Froliger, M., Turlier, V., Simcic-Mori, A., Gravier, E.,…Duplan, H. (2025). Scalp Microbiome Dynamics Can Contribute to the Clinical Effect of a Novel Antiseborrheic Dermatitis Shampoo Containing Patented Antifungal Actives: A Randomized Controlled Study. Dermatol Ther (Heidelb), 15(8), 2077-2097. https://doi.org/10.1007/s13555-025-01408-z

Navarro Triviño, F. J., Velasco Amador, J. P., & Rivera Ruiz, I. (2025). Seborrheic Dermatitis Revisited: Pathophysiology, Diagnosis, and Emerging Therapies-A Narrative Review. Biomedicines, 13(10). https://doi.org/10.3390/biomedicines13102458

Ozcan, Y., Sungur, M. A., Ozcan, B. Y., Eyup, Y., & Ozlu, E. (2023). The Psychosocial Impact of Chronic Facial Dermatoses in Adults. Dermatol Pract Concept, 13(1). https://doi.org/10.5826/dpc.1301a29

Park, H. R., Oh, J. H., Lee, Y. J., Park, S. H., Lee, Y. W., Lee, S.,…Kim, J. E. (2021). Inflammasome-mediated Inflammation by Malassezia in human keratinocytes: A comparative analysis with different strains. Mycoses, 64(3), 292-299. https://doi.org/10.1111/myc.13214

Park, M., Park, S., & Jung, W. H. (2021). Skin Commensal Fungus. J Microbiol Biotechnol, 31(5), 637-644. https://doi.org/10.4014/jmb.2012.12048

Park, T., Kim, H. J., Myeong, N. R., Lee, H. G., Kwack, I., Lee, J.,…An, S. (2017). Collapse of human scalp microbiome network in dandruff and seborrhoeic dermatitis. Exp Dermatol, 26(9), 835-838. https://doi.org/10.1111/exd.13293

Polaskey, M. T., Chang, C. H., Daftary, K., Fakhraie, S., Miller, C. H., & Chovatiya, R. (2024). The Global Prevalence of Seborrheic Dermatitis: A Systematic Review and Meta-Analysis. JAMA Dermatol, 160(8), 846-855. https://doi.org/10.1001/jamadermatol.2024.1987

Prajapati, S. K., Lekkala, L., Yadav, D., Jain, S., & Yadav, H. (2025). Microbiome and Postbiotics in Skin Health. Biomedicines, 13(4). https://doi.org/10.3390/biomedicines13040791

Prescott, S. L., Larcombe, D. L., Logan, A. C., West, C., Burks, W., Caraballo, L.,…Campbell, D. E. (2017). The skin microbiome: impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organ J, 10(1), 29. https://doi.org/10.1186/s40413-017-0160-5

Rinaldi, A. O., Li, M., Barletta, E., D'Avino, P., Yazici, D., Pat, Y.,…Mitamura, Y. (2024). Household laundry detergents disrupt barrier integrity and induce inflammation in mouse and human skin. Allergy, 79(1), 128-141. https://doi.org/10.1111/all.15891

Rušanac, A., Škibola, Z., Matijašić, M., Čipčić Paljetak, H., & Perić, M. (2025). Microbiome-Based Products: Therapeutic Potential for Inflammatory Skin Diseases. Int J Mol Sci, 26(14). https://doi.org/10.3390/ijms26146745

Ryczaj, K., Beken, B., & Akdis, C. (2025). Feeding the Skin Barrier: The Impact of Macro- and Micronutrients on Skin Barrier Function. Clin Transl Allergy, 15(11), e70105. https://doi.org/10.1002/clt2.70105

Sanders, M. G. H., Nijsten, T., Verlouw, J., Kraaij, R., & Pardo, L. M. (2021). Composition of cutaneous bacterial microbiome in seborrheic dermatitis patients: A cross-sectional study. PLoS One, 16(5), e0251136. https://doi.org/10.1371/journal.pone.0251136

Sanders, M. G. H., Pardo, L. M., Ginger, R. S., Kiefte-de Jong, J. C., & Nijsten, T. (2019). Association between Diet and Seborrheic Dermatitis: A Cross-Sectional Study. J Invest Dermatol, 139(1), 108-114. https://doi.org/10.1016/j.jid.2018.07.027

Saxena, R., Mittal, P., Clavaud, C., Dhakan, D. B., Hegde, P., Veeranagaiah, M. M.,…Sharma, V. K. (2018). Comparison of Healthy and Dandruff Scalp Microbiome Reveals the Role of Commensals in Scalp Health. Front Cell Infect Microbiol, 8, 346. https://doi.org/10.3389/fcimb.2018.00346

Semiz, Y., & Aktaş, E. (2025). Investigating the role of dietary glycemic factors and antioxidant capacity, metabolic status, and oxidative stress in seborrheic dermatitis: A case-control study. J Am Acad Dermatol, 92(3), 503-510. https://doi.org/10.1016/j.jaad.2024.10.078

Sfriso, R., & Claypool, J. (2020). Microbial Reference Frames Reveal Distinct Shifts in the Skin Microbiota after Cleansing. Microorganisms, 8(11). https://doi.org/10.3390/microorganisms8111634

Skowron, K., Bauza-Kaszewska, J., Kraszewska, Z., Wiktorczyk-Kapischke, N., Grudlewska-Buda, K., Kwiecińska-Piróg, J.,…Gospodarek-Komkowska, E. (2021). Human Skin Microbiome: Impact of Intrinsic and Extrinsic Factors on Skin Microbiota. Microorganisms, 9(3). https://doi.org/10.3390/microorganisms9030543

Tai, M., He, Q., Lv, P., Li, W., Ling, X., Li, L., & Guo, M. (2025). Madecassoside alleviates PM. Biochem Biophys Res Commun, 770, 151977. https://doi.org/10.1016/j.bbrc.2025.151977

Tajima, M., Sugita, T., Nishikawa, A., & Tsuboi, R. (2008). Molecular analysis of Malassezia microflora in seborrheic dermatitis patients: comparison with other diseases and healthy subjects. J Invest Dermatol, 128(2), 345-351. https://doi.org/10.1038/sj.jid.5701017

Tanaka, A., Cho, O., Saito, M., Tsuboi, R., Kurakado, S., & Sugita, T. (2014). Molecular Characterization of the Skin Fungal Microbiota in Patients with Seborrheic Dermatitis. Journal of clinical & experimental dermatology research, 5, 1-4.

Tao, R., Li, R., & Wang, R. (2023). Comparative analysis of the facial microbiome between rosacea and seborrheic dermatitis. Indian J Dermatol Venereol Leprol, 89(6), 891-893. https://doi.org/10.25259/IJDVL_215_2022

Truglio, M., Sivori, F., Cavallo, I., Abril, E., Licursi, V., Fabrizio, G.,…Di Domenico, E. G. (2024). Modulating the skin mycobiome-bacteriome and treating seborrheic dermatitis with a probiotic-enriched oily suspension. Sci Rep, 14(1), 2722. https://doi.org/10.1038/s41598-024-53016-0

Tynes, B. E., Johnson, C. D., Vaish, M. H., Abbott, B., Vučenović, J., Varrassi, G.,…Kaye, A. D. (2024). Ketoconazole Shampoo for Seborrheic Dermatitis of the Scalp: A Narrative Review. Cureus, 16(8), e67532. https://doi.org/10.7759/cureus.67532

Wang, Y., Li, J., Wu, J., Gu, S., Hu, H., Cai, R.,…Zou, Y. (2023). Effects of a Postbiotic. Clin Cosmet Investig Dermatol, 16, 2623-2635. https://doi.org/10.2147/CCID.S415787

Woolhiser, E., Keime, N., Patel, A., Weber, I., Adelman, M., & Dellavalle, R. P. (2024). Nutrition, Obesity, and Seborrheic Dermatitis: Systematic Review. JMIR Dermatol, 7, e50143. https://doi.org/10.2196/50143

Wu, G., Zhao, H., Li, C., Rajapakse, M. P., Wong, W. C., Xu, J.,…Dawson, T. L. (2015). Genus-Wide Comparative Genomics of Malassezia Delineates Its Phylogeny, Physiology, and Niche Adaptation on Human Skin. PLoS Genet, 11(11), e1005614. https://doi.org/10.1371/journal.pgen.1005614

Xu, Z., Wang, Z., Yuan, C., Liu, X., Yang, F., Wang, T.,…Zhang, M. (2016). Dandruff is associated with the conjoined interactions between host and microorganisms. Sci Rep, 6, 24877. https://doi.org/10.1038/srep24877

Zhao, H., Yu, F., Wang, C., Han, Z., Liu, S., Chen, D.,…Huang, Z. (2024). The impacts of sodium lauroyl sarcosinate in facial cleanser on facial skin microbiome and lipidome. J Cosmet Dermatol, 23(4), 1351-1359. https://doi.org/10.1111/jocd.16092

Zheng, Y., Hunt, R. L., Villaruz, A. E., Fisher, E. L., Liu, R., Liu, Q.,…Otto, M. (2022). Commensal Staphylococcus epidermidis contributes to skin barrier homeostasis by generating protective ceramides. Cell Host Microbe, 30(3), 301-313.e309. https://doi.org/10.1016/j.chom.2022.01.004

Published
2026-02-09
Citations
How to Cite
Oliwia Jerzyńska, Miszela Kałachurska, Martyna Rożek, Maria Nowakowska, Aleksandra Kowalewska-Kurek, Aleksandra Lisowska, Bartosz Nowak, Maria Sierant, Mateusz Gural, & Constancia Esther Guy. (2026). SKIN MICROBIOME IN SEBORRHEIC DERMATITIS: PATHOGENESIS, THERAPEUTIC IMPLICATIONS, AND ENVIRONMENTAL MODULATION OF DYSBIOSIS. International Journal of Innovative Technologies in Social Science, (1(49). https://doi.org/10.31435/ijitss.1(49).2026.4800