LITHIUM AND ALZHEIMER’S DISEASE: NEUROBIOLOGICAL MECHANISMS, ETHICAL IMPLICATIONS, AND SOCIAL PERSPECTIVES ON COGNITIVE AGING
Abstract
Alzheimer’s disease is a progressive, idiopathic neurodegenerative disorder characterized by the accumulation of amyloid plaques, tau tangles, and synaptic degeneration. Its global prevalence continues to rise, posing significant challenges for healthcare systems and aging societies. Despite recent advances in disease-modifying treatment, such as monoclonal antibodies (donanemab, lecanemab, aducanumab), their high cost, limited efficacy, and risk of adverse effects underline the urgent need for therapies that are safe, effective, and economically accessible.
This review evaluates the role of lithium a long-established mood stabilizer in the prevention and modulation of Alzheimer’s disease. Drawing from preclinical studies, observational data, and early-phase clinical trials published between 2017 and 2025, it examines how lithium influences key pathological mechanisms including amyloid precursor protein processing, tau phosphorylation, oxidative stress, neuroinflammation, and synaptic plasticity. Chronic exposure to low or trace doses has been associated with delayed cognitive decline and reduced disease incidence in several populations. However, evidence from randomized trials remains inconclusive, warranting further rigorous investigation.
In addition to biological mechanisms, this review explores ethical and social dimensions of lithium use in older adults, including questions of informed consent, adherence, age-related pharmacokinetics, and the stigma of psychiatric medication.
Lithium emerges as a biologically plausible, cost-effective, and potentially scalable strategy for addressing cognitive aging. Future directions require ethically sound, large-scale clinical trials and a broader public health dialogue on the integration of preventive pharmacotherapy into neurodegenerative disease management.
References
2024 Alzheimer’s disease facts and figures. (2024). Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 20(5), 3708–3821. https://doi.org/10.1002/alz.13809
World Health Organization. (2021, September 2). Dementia. https://www.who.int/news-room/fact-sheets/detail/dementia
Kim, A. Y., Al Jerdi, S., MacDonald, R., & Triggle, C. R. (2024). Alzheimer’s disease and its treatment—Yesterday, today, and tomorrow. Frontiers in Pharmacology, 15, 1399121. https://doi.org/10.3389/fphar.2024.1399121
Marucci, G., Buccioni, M., Ben, D. D., Lambertucci, C., Volpini, R., & Amenta, F. (2021). Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology, 190, 108352. https://doi.org/10.1016/j.neuropharm.2020.108352
Zuliani, G., Zuin, M., Romagnoli, T., Polastri, M., Cervellati, C., & Brombo, G. (2024). Acetyl-cholinesterase inhibitors reconsidered: A narrative review of post-marketing studies on Alzheimer’s disease. Aging Clinical and Experimental Research, 36(1), 23. https://doi.org/10.1007/s40520-023-02675-6
Lacorte, E., Ancidoni, A., Zaccaria, V., et al. (2022). Safety and efficacy of monoclonal antibodies for Alzheimer’s disease: A systematic review and meta-analysis of published and unpublished clinical trials. Journal of Alzheimer’s Disease, 87(1), 101–129. https://doi.org/10.3233/JAD-220046
Waite, L. M. (2024). New and emerging drug therapies for Alzheimer disease. Australian Prescriber, 47(3), 75–79. https://doi.org/10.18773/austprescr.2024.021
Yiannopoulou, K. G., & Papageorgiou, S. G. (2020). Current and future treatments in Alzheimer disease: An update. Journal of Central Nervous System Disease, 12, 1179573520907397. https://doi.org/10.1177/1179573520907397
Denys, B., Góra, K., Zdziennicki, W., Zimnicki, P., Lato, M., Iberszer, K., & Antonik, D. (2023). The use of lithium in psychiatric, viral and neurological disorders: A review. Journal of Education, Health and Sport, 18(1), 147–161. https://doi.org/10.12775/JEHS.2023.18.01.013
Aron, L., Ngian, Z. K., Qiu, C., Choi, J., Liang, M., Drake, D. M., Hamplova, S. E., Lacey, E. K., Roche, P., Yuan, M., Hazaveh, S. S., Lee, E. A., Bennett, D. A., & Yankner, B. A. (2025). Lithium deficiency and the onset of Alzheimer’s disease. Nature, 645(8081), 712–721. https://doi.org/10.1038/s41586-025-09335-x
Forlenza, O. V., Radanovic, M., Talib, L. L., & Gattaz, W. F. (2019). Clinical and biological effects of long-term lithium treatment in older adults with amnestic mild cognitive impairment: Randomised clinical trial. British Journal of Psychiatry, 215(5), 668–674. https://doi.org/10.1192/bjp.2019.76
Malerba, H. N., Pereira, A. A. R., Pierrobon, M. F., Abrao, G. S., Toricelli, M., Akamine, E. H., Buck, H. S., & Viel, T. A. (2021). Combined neuroprotective strategies blocked neurodegeneration and improved brain function in senescence-accelerated mice. Frontiers in Aging Neuroscience, 13, 681498. https://doi.org/10.3389/fnagi.2021.681498
Lu, Q., Lv, H., Liu, X., Zang, L., Zhang, Y., & Meng, Q. (2024). Lithium therapy’s potential to lower dementia risk and the prevalence of Alzheimer’s disease: A meta-analysis. European Neurology, 87(2), 93–104. https://doi.org/10.1159/000538846
Wei, H. F., Anchipolovsky, S., Vera, R., Liang, G., & Chuang, D. M. (2022). Potential mechanisms underlying lithium treatment for Alzheimer’s disease and COVID-19. European Review for Medical and Pharmacological Sciences, 26(6), 2201–2214. https://doi.org/10.26355/eurrev_202203_28369
Damri, O., Shemesh, N., & Agam, G. (2020). Is there justification to treat neurodegenerative disorders by repurposing drugs? The case of Alzheimer’s disease, lithium, and autophagy. International Journal of Molecular Sciences, 22(1), 189. https://doi.org/10.3390/ijms22010189
Singulani, M. P., Camarini, R., Talib, L. L., Britto, L. R., & Forlenza, O. V. (2025). Lithium as a pharmacological approach to treat behavioral complications in Alzheimer’s disease: A preclinical study. Alzheimer’s & Dementia, 20(Suppl. 1), e090340. https://doi.org/10.1002/alz.090340
Strawbridge, R., & Young, A. H. (2024). Lithium: How low can you go? International Journal of Bipolar Disorders, 12(4), 4. https://doi.org/10.1186/s40345-024-00325-y
Radanovic, M., Singulani, M. P., De Paula, V. J. R., Talib, L. L., & Forlenza, O. V. (2025). An overview of the effects of lithium on Alzheimer’s disease: A historical perspective. Pharmaceuticals, 18(4), 532. https://doi.org/10.3390/ph18040532
Pereira, A. A. R., Pinto, A. M., Malerba, H. N., Toricelli, M., Buck, H. S., & Viel, T. A. (2024). Microdose lithium improves behavioral deficits and modulates molecular mechanisms of memory formation in female SAMP-8 mice. PLOS ONE, 19(4), e0299534. https://doi.org/10.1371/journal.pone.0299534
Algazzawi, H., Abujamai, J., Alshanberi, A. M., Satar, R., & Ansari, S. A. (2025). Role of GSK-3 inhibition in Alzheimer’s disease therapy. Current Alzheimer Research. Advance online publication. https://doi.org/10.2174/0115672050400781250904082943
Santos, R., Linker, S. B., Stern, S., Mendes, A. P. D., Shokhirev, M. N., Erikson, G., Randolph-Moore, L., Racha, V., Kim, Y., Kelsoe, J. R., Bang, A. G., Alda, M., Marchetto, M. C., & Gage, F. H. (2021). Deficient LEF1 expression is associated with lithium resistance and hyperexcitability in neurons derived from bipolar disorder patients. Molecular Psychiatry, 26(6), 2440–2456. https://doi.org/10.1038/s41380-020-00981-3
Kato, T. (2019). Current understanding of bipolar disorder: Toward integration of biological basis and treatment strategies. Psychiatry and Clinical Neurosciences, 73(9), 526–540. https://doi.org/10.1111/pcn.12852
Saha, S., Krishnan, H., & Raghu, P. (2023). IMPA1-dependent regulation of phosphatidylinositol 4,5-bisphosphate and calcium signalling by lithium. Life Science Alliance, 7(2), e202302425. https://doi.org/10.26508/lsa.202302425
Angst, G., Jia, N., Esqueda, L. E. T., Fan, Y., Cai, Q., & Wang, C. (2025). Autophagy in Alzheimer disease pathogenesis and its therapeutic values. Autophagy Reports, 4(1), 2471677. https://doi.org/10.1080/27694127.2025.2471677
Zilocchi, M., Broderick, K., Phanse, S., Aly, K. A., & Babu, M. (2020). Mitochondria under the spotlight: Implications of mitochondrial dysfunction and connectivity to neuropsychiatric disorders. Computational and Structural Biotechnology Journal, 18, 2535–2546. https://doi.org/10.1016/j.csbj.2020.09.008
Hamstra, S. I., Roy, B. D., Tiidus, P., MacNeil, A. J., Klentrou, P., MacPherson, R. E. K., & Fajardo, V. A. (2023). Beyond its psychiatric use: Benefits of low-dose lithium supplementation. Current Neuropharmacology, 21(4), 891–910. https://doi.org/10.2174/1570159X20666220302151224
Lior, N., Chen, D., Dan, F., & Ronit, P. K. (2025). The connection between autophagy and Alzheimer’s disease. Inflammation Research, 74(1), 148. https://doi.org/10.1007/s00011-025-02118-0
Lauretti, E., Dincer, O., & Praticò, D. (2020). Glycogen synthase kinase-3 signaling in Alzheimer’s disease. Biochimica et Biophysica Acta – Molecular Cell Research, 1867(5), 118664. https://doi.org/10.1016/j.bbamcr.2020.118664
Terao, I., Honyashiki, M., & Inoue, T. (2022). Comparative efficacy of lithium and aducanumab for cognitive decline: A systematic review and network meta-analysis. Ageing Research Reviews, 81, 101709. https://doi.org/10.1016/j.arr.2022.101709
Arbanas, J. C., Damberg, C. L., Leng, M., Harawa, N., Sarkisian, C. A., Landon, B. E., & Mafi, J. N. (2023). Estimated annual spending on lecanemab and its ancillary costs in the US Medicare program. JAMA Internal Medicine, 183(8), 885–889. https://doi.org/10.1001/jamainternmed.2023.1749
Lofts, A., Abu-Hijleh, F., Rigg, N., Winterhelt, E., Kostashuk, M., Monterio, A., Tavakolian, M., Preciado Rivera, N., Frey, B. N., Mishra, R. K., & Hoare, T. (2025). Nose-to-brain delivery of lithium via a sprayable in situ-forming hydrogel. Journal of Controlled Release, 378, 831–846. https://doi.org/10.1016/j.jconrel.2024.12.063
Buonerba, A., Puliatti, G., Puma, D. D. L., Bandiera, B., Cannata, B., Marcocci, M. E., Castagno, N., Contento, I., Impemba, S., Scognamiglio, M., Girolamo, R. D., Naddeo, V., Canton, P., Capacchione, C., Sposito, L., Albini, M., Pastore, F., Baroni, S., Grassi, A., Grassi, C., & Piacentini, R. (2025). Lithium-charged gold nanoparticles for lithium delivery and GSK-3 modulation. Advanced Materials. Advance online publication. https://doi.org/10.1002/adma.202513858
Bhuiyan, P., Zhang, W., Liang, G., et al. (2025). Intranasal delivery of lithium salt suppresses inflammatory pyroptosis and ameliorates memory loss in 5XFAD mice. Journal of Neuroimmune Pharmacology, 20, 26. https://doi.org/10.1007/s11481-025-10185-7
Kessing, L. V., Gerds, T. A., Knudsen, N. N., Jørgensen, L. F., Kristiansen, S. M., Voutchkova, D., Ernstsen, V., Schullehner, J., Hansen, B., Andersen, P. K., & Ersbøll, A. K. (2017). Association of lithium in drinking water with the incidence of dementia. JAMA Psychiatry, 74(10), 1005–1010. https://doi.org/10.1001/jamapsychiatry.2017.2362
Duthie, A. C., Hannah, J., Batty, G. D., Deary, I. J., Starr, J. M., Smith, D. J., & Russ, T. C. (2023). Low-level lithium in drinking water and dementia risk. International Journal of Geriatric Psychiatry, 38(3), e5890. https://doi.org/10.1002/gps.5890
Fenech, R. K., Hamstra, S. I., Finch, M. S., Ryan, C. R., Marko, D. M., Roy, B. D., Fajardo, V. A., & MacPherson, R. E. K. (2023). Low-dose lithium supplementation influences GSK3β activity. Journal of Alzheimer’s Disease, 91(2), 615–626. https://doi.org/10.3233/JAD-220813
Boivin, E., Le Daré, B., Bellay, R., Vigneau, C., Mercerolle, M., & Bacle, A. (2023). Long-term lithium therapy and chronic kidney disease risk. International Journal of Bipolar Disorders, 11(1), 4. https://doi.org/10.1186/s40345-023-00286-8
Shen, Y., Zhao, M., Zhao, P., Meng, L., Zhang, Y., Zhang, G., Taishi, Y., & Sun, L. (2024). Molecular mechanisms and therapeutic potential of lithium in Alzheimer’s disease. Frontiers in Pharmacology, 15, 1408462. https://doi.org/10.3389/fphar.2024.1408462
Fraiha-Pegado, J., de Paula, V. J. R., Alotaibi, T., Forlenza, O., & Hajek, T. (2024). Trace lithium levels in drinking water and dementia risk: A systematic review. International Journal of Bipolar Disorders, 12(1), 32. https://doi.org/10.1186/s40345-024-00348-5
2020 Alzheimer’s disease facts and figures. (2020). Alzheimer’s & Dementia. Advance online publication. https://doi.org/10.1002/alz.12068
Ferensztajn-Rochowiak, E., & Rybakowski, J. K. (2023). Long-term lithium therapy: Side effects and interactions. Pharmaceuticals, 16(1), 74. https://doi.org/10.3390/ph16010074
Vantyghem, M.-C. (2023). Iatrogenic endocrine complications of lithium therapy. Annales d’Endocrinologie, 84(3), 391–397. https://doi.org/10.1016/j.ando.2023.03.004
Devanand, D. P., Crocco, E., Forester, B. P., Husain, M. M., Lee, S., Vahia, I. V., Andrews, H., Simon-Pearson, L., Imran, N., Luca, L., Huey, E. D., Deliyannides, D. A., & Pelton, G. H. (2022). Low-dose lithium treatment of behavioral complications in Alzheimer’s disease. The American Journal of Geriatric Psychiatry, 30(1), 32–42. https://doi.org/10.1016/j.jagp.2021.04.014
Palmos, A. B., et al. (2021). Lithium treatment and human hippocampal neurogenesis. Translational Psychiatry, 11(1), 555. https://doi.org/10.1038/s41398-021-01695-y
Copyright (c) 2026 Katarzyna Anna Kowalska, Jakub Tomasz Latos, Franciszek Szweda, Tomasz Poczwardowski, Adrianna Kaczmarek, Marcin Chwalczuk, Olivia Grygorcewicz, Marta Koneczna, Karolina Alicja Krystyniak, Kinga Augustyniak, Klaudia Leszto, Natalia Smuniewska

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

