NOVEL APPROACHES IN OBESITY TREATMENT: THE PROMISE OF GENE THERAPIES
Abstract
Introduction and Purpose: Obesity constitutes a significant global public health concern driven by multifactorial interactions among genetic, metabolic, and environmental determinants [2, 7, 13, 28]. Conventional interventions—including lifestyle modification, pharmacotherapy, and bariatric procedures—frequently provide only limited or temporary benefits [2, 21]. This review evaluates emerging gene-based therapeutic strategies designed to target the molecular pathways responsible for obesity development and progression.
Current State of Knowledge: Preclinical animal studies utilizing adeno-associated virus (AAV) vectors have demonstrated effective adipose-tissue-specific gene delivery, resulting in enhanced thermogenesis, improved insulin sensitivity, and measurable reductions in adiposity [8, 10, 12, 16, 26]. Key metabolic regulators, such as fibroblast growth factor 21 (FGF21), uncoupling protein 1 (UCP1), and elements of the leptin–melanocortin axis, have shown promising modulation in experimental models [4, 8, 9, 22,32]. Furthermore, adipose-derived mesenchymal stem cells are being explored as potential vehicles for targeted gene delivery, although these approaches remain in early developmental phases [14]. Clinically, the most advanced gene-based interventions include RNA interference (RNAi) platforms—particularly modulators of pathways such as ALK7 or INHBE—which are currently undergoing evaluation for obesity management [ 23, 31].
Summary: While gene therapy applications for obesity remain primarily experimental, emerging evidence underscores their potential to address fundamental metabolic dysfunction rather than merely mitigate clinical manifestations [8, 18, 24]. Advancements in vector precision, tissue-targeted delivery, and long-term safety evaluation will be essential for future translation into clinical practice [10, 11, 26]
References
Angelidi, A. M., Belanger, M. J., Kokkinos, A., Koliaki, C. C., & Mantzoros, C. S. (2022). Novel noninvasive approaches to the treatment of obesity: From pharmacotherapy to gene therapy. Endocrine Reviews, 43(3), 507–557. https://doi.org/10.1210/endrev/bnab034
Blüher, M. (2019). Obesity: global epidemiology and pathogenesis. Nature Reviews Endocrinology, 15(5), 288–298. https://doi.org/10.1038/s41574-019-0176-8
Faccioli, N., Poitou, C., Clément, K., & Dubern, B. (2023). Current treatments for patients with genetic obesity. Journal of Clinical Research in Pediatric Endocrinology, 15(2), 108–119. https://doi.org/10.4274/jcrpe.galenos.2023.2023-3-2
Fisher, F. M., & Maratos-Flier, E. (2016). Understanding the biology of FGF21. Annual Review of Physiology, 78, 223–241. https://doi.org/10.1146/annurev-physiol-021115-105339
Herrada, A. A., Olate-Briones, A., Rojas, A., Liu, C., Escobedo, N., & Piesche, M. (2021). Adipose tissue macrophages as a therapeutic target in obesity-associated diseases. Obesity Reviews, 22(6), e13200. https://doi.org/10.1111/obr.13200
Huang, W., Bates, R., Appana, B., Mohammed, T., & Cao, L. (2024). Development of an adipose-tropic AAV capsid ablating liver tropism. iScience, 27(10), 110930. https://doi.org/10.1016/j.isci.2024.110930
Hruby, A., & Hu, F. B. (2015). The epidemiology of obesity: A big picture. Pharmacoeconomics, 33(7), 673–689. https://doi.org/10.1007/s40273-014-0243-x
Jimenez, V., Casana, E., Gavaldà-Navarro, A., Sacristan, V., Muñoz, S., Darriba, S., … Bosch, F. (2018). FGF21 gene therapy as treatment for obesity and insulin resistance. EMBO Molecular Medicine, 10(11), e8791. https://doi.org/10.15252/emmm.201708791
Kazak, L., Chouchani, E. T., Jedrychowski, M. P., Erickson, B. K., Shinoda, K., Cohen, P., … Spiegelman, B. M. (2015). A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell, 163(3), 643–655. https://doi.org/10.1016/j.cell.2015.09.035
Kharitonenkov, A., & Adams, A. C. (2014). Inventing new medicines: The FGF21 story. Molecular Metabolism, 3(3), 221–229. https://doi.org/10.1016/j.molmet.2013.12.003
Lisowski, L., Tay, S. S., & Alexander, I. E. (2015). Adeno-associated virus serotypes for gene therapeutics. Current Opinion in Pharmacology, 24, 59–67. https://doi.org/10.1016/j.coph.2015.07.006
Liu, X., Magee, D., Wang, C., McMurphy, T., Slater, A., During, M., & Cao, L. (2014). Adipose tissue insulin receptor knockdown via a new primate-derived hybrid recombinant AAV serotype. Molecular Therapy Methods & Clinical Development, 1, 8. https://doi.org/10.1038/mtm.2013.8
Loos, R. J. F., & Yeo, G. S. H. (2022). The genetics of obesity: From discovery to biology. Nature Reviews Genetics, 23(2), 120–133. https://doi.org/10.1038/s41576-021-00414-z
Lopez-Yus, M., García-Sobreviela, M. P., del Moral-Bergos, R., & Arbones-Mainar, J. M. (2023). Gene therapy based on mesenchymal stem cells derived from adipose tissue for the treatment of obesity and its metabolic complications. International Journal of Molecular Sciences, 24(8), 7468. https://doi.org/10.3390/ijms24087468
Nampoothiri, S., Nogueiras, R., Schwaninger, M., & Prevot, V. (2022). Glial cells as integrators of peripheral and central signals in the regulation of energy homeostasis. Nature Metabolism, 4, 813–825. https://doi.org/10.1038/s42255-022-00610-z
O’Neill, S. M., Hinkle, C., Chen, S.-J., Sandhu, A., Hovhannisyan, R., Stephan, S., Lagor, W. R., Ahima, R. S., Johnston, J. C., & Reilly, M. P. (2014). Targeting adipose tissue via systemic gene therapy. Gene Therapy, 21(7), 653–661. https://doi.org/10.1038/gt.2014.38
Owen, B. M., Ding, X., Morgan, A. D., Coate-Colbert, K., Bookout, A. L., Rahmouni, K., Kliewer, A. S., & Mangelsdorf, J. D. (2014). FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metabolism, 20(4), 670–677. https://doi.org/10.1016/j.cmet.2014.07.012
Prieur, X., & Cao, L. (2024). Precision medicine: Toward restoring fat with gene therapy in inherited lipodystrophy. Gene Therapy, 31, 560–562. https://doi.org/10.1038/s41434-024-00489-3
Ravussin, E., & Galgani, J. E. (2011). The implication of brown adipose tissue for humans. Annual Review of Nutrition, 31, 33–47. https://doi.org/10.1146/annurev-nutr-072610-145209
Rosen, E. D., & Spiegelman, B. M. (2014). What we talk about when we talk about fat. Cell, 156(1–2), 20–44. https://doi.org/10.1016/j.cell.2013.12.012
Saltiel, A. R. (2016). New therapeutic approaches for the treatment of obesity. Science Translational Medicine, 8(323), 323rv2. https://doi.org/10.1126/scitranslmed.aad18
Samms, R. J., Smith, D. P., Cheng, C. C., Antonellis, P. P., Perfield, W. J., II, Kharitonenkov, A., Gimeno, R. E., & Adams, A. C. (2015). Discrete aspects of FGF21 in vivo pharmacology do not require UCP1. Cell Reports, 11(7), 991–999. https://doi.org/10.1016/j.celrep.2015.04.046
Sohn, Y. B. (2022). Genetic obesity: An update with emerging therapeutic approaches. Annals of Pediatric Endocrinology & Metabolism, 27(3), 169–175. https://doi.org/10.6065/apem.2244188.094
Sommer, N., Roumane, A., Han, W., Delibegović, M., Rochford, J. J., & McIlroy, G. D. (2022). Gene therapy restores adipose tissue and metabolic health in a pre-clinical mouse model of lipodystrophy. Molecular Therapy Methods & Clinical Development, 27, 206–216. https://doi.org/10.1016/j.omtm.2022.09.014
Sookoian, S., & Pirola, C. J. (2020). Precision medicine in nonalcoholic fatty liver disease: New therapeutic insights from genetics and systems biology. Clinical and Molecular Hepatology, 26(4), 461–475. https://doi.org/10.3350/cmh.2020.0136
Uhrig-Schmidt, S., Geiger, M., Luippold, G., Birk, G., Mennerich, D., Neubauer, H., Grimm, D., Wolfrum, C., & Kreuz, S. (2014). Gene delivery to adipose tissue using transcriptionally targeted rAAV8 vectors. PLoS ONE, 9(12), e116288. https://doi.org/10.1371/journal.pone.0116288
Wang, J., Ge, J., Cao, H., Zhang, X., Guo, Y., Li, X., Xia, B., Yang, G., & Shi, X. (2019). Leptin promotes white adipocyte browning by inhibiting the Hh signaling pathway. Cells, 8(4), 372. https://doi.org/10.3390/cells8040372
World Health Organization. (2023). Obesity and overweight: Key facts. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweightty
Xiang, L., Liu, M., Xiang, G., Yue, L., Zhang, J., Xu, X., & Dong, J. (2024). Dapagliflozin promotes white adipose tissue browning through regulating angiogenesis in high-fat induced obese mice. BMC Pharmacology and Toxicology, 25, 26. https://doi.org/10.1186/s40360-024-00747-5
Zhang, Z., Zhang, X. X., Liu, Z. F., Guo, X. R., Cui, X. W., Ji, C. B., Zhong, H., & Chi, X. (2020). Inhibition of Hedgehog signaling promotes white adipose tissue browning. Molecular and Cellular Endocrinology, 518, 110970. https://doi.org/10.1016/j.mce.2020.110970
Zuccaro, M. V., LeDuc, C. A., & Thaker, V. V. (2024). Updates on rare genetic variants, genetic testing, and gene therapy in individuals with obesity. Current Obesity Reports, 13, 626–641. https://doi.org/10.1007/s13679-024-00567-y
Sheikh-Hosseini, M., Larijani, B., Gholipoor Kakroodi, Z., Shokoohi, M., & Sayahpour, F. A. (2025).Innovative gene therapy strategies for tackling obesity. The Egyptian Journal of Medical Human Genetics, 26, Article 16. https://doi.org/10.1186/s43042-025-00686-8
Views:
27
Downloads:
18
Copyright (c) 2025 Karolina Błądzińska, Anna Opalińska, Cezary Lubas, Paula Folta, Kacper Szeląg, Joanna Kłosowska, Maciej Błądziński, Małgorzata Zach, Piotr Świerczek, Antoni Kujawski

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

