NOVEL APPROACHES IN OBESITY TREATMENT: THE PROMISE OF GENE THERAPIES

Keywords: Obesity, Gene Therapy, AAV Vectors, RNA Interference, Metabolic Regulation, Precision Medicine

Abstract

Introduction and Purpose: Obesity constitutes a significant global public health concern driven by multifactorial interactions among genetic, metabolic, and environmental determinants [2, 7, 13, 28]. Conventional interventions—including lifestyle modification, pharmacotherapy, and bariatric procedures—frequently provide only limited or temporary benefits [2, 21]. This review evaluates emerging gene-based therapeutic strategies designed to target the molecular pathways responsible for obesity development and progression.

Current State of Knowledge: Preclinical animal studies utilizing adeno-associated virus (AAV) vectors have demonstrated effective adipose-tissue-specific gene delivery, resulting in enhanced thermogenesis, improved insulin sensitivity, and measurable reductions in adiposity [8, 10, 12, 16, 26]. Key metabolic regulators, such as fibroblast growth factor 21 (FGF21), uncoupling protein 1 (UCP1), and elements of the leptin–melanocortin axis, have shown promising modulation in experimental models [4, 8, 9, 22,32]. Furthermore, adipose-derived mesenchymal stem cells are being explored as potential vehicles for targeted gene delivery, although these approaches remain in early developmental phases [14]. Clinically, the most advanced gene-based interventions include RNA interference (RNAi) platforms—particularly modulators of pathways such as ALK7 or INHBE—which are currently undergoing evaluation for obesity management [ 23, 31].

Summary: While gene therapy applications for obesity remain primarily experimental, emerging evidence underscores their potential to address fundamental metabolic dysfunction rather than merely mitigate clinical manifestations [8, 18, 24]. Advancements in vector precision, tissue-targeted delivery, and long-term safety evaluation will be essential for future translation into clinical practice [10, 11, 26]

References

Angelidi, A. M., Belanger, M. J., Kokkinos, A., Koliaki, C. C., & Mantzoros, C. S. (2022). Novel noninvasive approaches to the treatment of obesity: From pharmacotherapy to gene therapy. Endocrine Reviews, 43(3), 507–557. https://doi.org/10.1210/endrev/bnab034

Blüher, M. (2019). Obesity: global epidemiology and pathogenesis. Nature Reviews Endocrinology, 15(5), 288–298. https://doi.org/10.1038/s41574-019-0176-8

Faccioli, N., Poitou, C., Clément, K., & Dubern, B. (2023). Current treatments for patients with genetic obesity. Journal of Clinical Research in Pediatric Endocrinology, 15(2), 108–119. https://doi.org/10.4274/jcrpe.galenos.2023.2023-3-2

Fisher, F. M., & Maratos-Flier, E. (2016). Understanding the biology of FGF21. Annual Review of Physiology, 78, 223–241. https://doi.org/10.1146/annurev-physiol-021115-105339

Herrada, A. A., Olate-Briones, A., Rojas, A., Liu, C., Escobedo, N., & Piesche, M. (2021). Adipose tissue macrophages as a therapeutic target in obesity-associated diseases. Obesity Reviews, 22(6), e13200. https://doi.org/10.1111/obr.13200

Huang, W., Bates, R., Appana, B., Mohammed, T., & Cao, L. (2024). Development of an adipose-tropic AAV capsid ablating liver tropism. iScience, 27(10), 110930. https://doi.org/10.1016/j.isci.2024.110930

Hruby, A., & Hu, F. B. (2015). The epidemiology of obesity: A big picture. Pharmacoeconomics, 33(7), 673–689. https://doi.org/10.1007/s40273-014-0243-x

Jimenez, V., Casana, E., Gavaldà-Navarro, A., Sacristan, V., Muñoz, S., Darriba, S., … Bosch, F. (2018). FGF21 gene therapy as treatment for obesity and insulin resistance. EMBO Molecular Medicine, 10(11), e8791. https://doi.org/10.15252/emmm.201708791

Kazak, L., Chouchani, E. T., Jedrychowski, M. P., Erickson, B. K., Shinoda, K., Cohen, P., … Spiegelman, B. M. (2015). A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell, 163(3), 643–655. https://doi.org/10.1016/j.cell.2015.09.035

Kharitonenkov, A., & Adams, A. C. (2014). Inventing new medicines: The FGF21 story. Molecular Metabolism, 3(3), 221–229. https://doi.org/10.1016/j.molmet.2013.12.003

Lisowski, L., Tay, S. S., & Alexander, I. E. (2015). Adeno-associated virus serotypes for gene therapeutics. Current Opinion in Pharmacology, 24, 59–67. https://doi.org/10.1016/j.coph.2015.07.006

Liu, X., Magee, D., Wang, C., McMurphy, T., Slater, A., During, M., & Cao, L. (2014). Adipose tissue insulin receptor knockdown via a new primate-derived hybrid recombinant AAV serotype. Molecular Therapy Methods & Clinical Development, 1, 8. https://doi.org/10.1038/mtm.2013.8

Loos, R. J. F., & Yeo, G. S. H. (2022). The genetics of obesity: From discovery to biology. Nature Reviews Genetics, 23(2), 120–133. https://doi.org/10.1038/s41576-021-00414-z

Lopez-Yus, M., García-Sobreviela, M. P., del Moral-Bergos, R., & Arbones-Mainar, J. M. (2023). Gene therapy based on mesenchymal stem cells derived from adipose tissue for the treatment of obesity and its metabolic complications. International Journal of Molecular Sciences, 24(8), 7468. https://doi.org/10.3390/ijms24087468

Nampoothiri, S., Nogueiras, R., Schwaninger, M., & Prevot, V. (2022). Glial cells as integrators of peripheral and central signals in the regulation of energy homeostasis. Nature Metabolism, 4, 813–825. https://doi.org/10.1038/s42255-022-00610-z

O’Neill, S. M., Hinkle, C., Chen, S.-J., Sandhu, A., Hovhannisyan, R., Stephan, S., Lagor, W. R., Ahima, R. S., Johnston, J. C., & Reilly, M. P. (2014). Targeting adipose tissue via systemic gene therapy. Gene Therapy, 21(7), 653–661. https://doi.org/10.1038/gt.2014.38

Owen, B. M., Ding, X., Morgan, A. D., Coate-Colbert, K., Bookout, A. L., Rahmouni, K., Kliewer, A. S., & Mangelsdorf, J. D. (2014). FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metabolism, 20(4), 670–677. https://doi.org/10.1016/j.cmet.2014.07.012

Prieur, X., & Cao, L. (2024). Precision medicine: Toward restoring fat with gene therapy in inherited lipodystrophy. Gene Therapy, 31, 560–562. https://doi.org/10.1038/s41434-024-00489-3

Ravussin, E., & Galgani, J. E. (2011). The implication of brown adipose tissue for humans. Annual Review of Nutrition, 31, 33–47. https://doi.org/10.1146/annurev-nutr-072610-145209

Rosen, E. D., & Spiegelman, B. M. (2014). What we talk about when we talk about fat. Cell, 156(1–2), 20–44. https://doi.org/10.1016/j.cell.2013.12.012

Saltiel, A. R. (2016). New therapeutic approaches for the treatment of obesity. Science Translational Medicine, 8(323), 323rv2. https://doi.org/10.1126/scitranslmed.aad18

Samms, R. J., Smith, D. P., Cheng, C. C., Antonellis, P. P., Perfield, W. J., II, Kharitonenkov, A., Gimeno, R. E., & Adams, A. C. (2015). Discrete aspects of FGF21 in vivo pharmacology do not require UCP1. Cell Reports, 11(7), 991–999. https://doi.org/10.1016/j.celrep.2015.04.046

Sohn, Y. B. (2022). Genetic obesity: An update with emerging therapeutic approaches. Annals of Pediatric Endocrinology & Metabolism, 27(3), 169–175. https://doi.org/10.6065/apem.2244188.094

Sommer, N., Roumane, A., Han, W., Delibegović, M., Rochford, J. J., & McIlroy, G. D. (2022). Gene therapy restores adipose tissue and metabolic health in a pre-clinical mouse model of lipodystrophy. Molecular Therapy Methods & Clinical Development, 27, 206–216. https://doi.org/10.1016/j.omtm.2022.09.014

Sookoian, S., & Pirola, C. J. (2020). Precision medicine in nonalcoholic fatty liver disease: New therapeutic insights from genetics and systems biology. Clinical and Molecular Hepatology, 26(4), 461–475. https://doi.org/10.3350/cmh.2020.0136

Uhrig-Schmidt, S., Geiger, M., Luippold, G., Birk, G., Mennerich, D., Neubauer, H., Grimm, D., Wolfrum, C., & Kreuz, S. (2014). Gene delivery to adipose tissue using transcriptionally targeted rAAV8 vectors. PLoS ONE, 9(12), e116288. https://doi.org/10.1371/journal.pone.0116288

Wang, J., Ge, J., Cao, H., Zhang, X., Guo, Y., Li, X., Xia, B., Yang, G., & Shi, X. (2019). Leptin promotes white adipocyte browning by inhibiting the Hh signaling pathway. Cells, 8(4), 372. https://doi.org/10.3390/cells8040372

World Health Organization. (2023). Obesity and overweight: Key facts. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweightty

Xiang, L., Liu, M., Xiang, G., Yue, L., Zhang, J., Xu, X., & Dong, J. (2024). Dapagliflozin promotes white adipose tissue browning through regulating angiogenesis in high-fat induced obese mice. BMC Pharmacology and Toxicology, 25, 26. https://doi.org/10.1186/s40360-024-00747-5

Zhang, Z., Zhang, X. X., Liu, Z. F., Guo, X. R., Cui, X. W., Ji, C. B., Zhong, H., & Chi, X. (2020). Inhibition of Hedgehog signaling promotes white adipose tissue browning. Molecular and Cellular Endocrinology, 518, 110970. https://doi.org/10.1016/j.mce.2020.110970

Zuccaro, M. V., LeDuc, C. A., & Thaker, V. V. (2024). Updates on rare genetic variants, genetic testing, and gene therapy in individuals with obesity. Current Obesity Reports, 13, 626–641. https://doi.org/10.1007/s13679-024-00567-y

Sheikh-Hosseini, M., Larijani, B., Gholipoor Kakroodi, Z., Shokoohi, M., & Sayahpour, F. A. (2025).Innovative gene therapy strategies for tackling obesity. The Egyptian Journal of Medical Human Genetics, 26, Article 16. https://doi.org/10.1186/s43042-025-00686-8

Views:

27

Downloads:

18

Published
2025-12-08
Citations
How to Cite
Karolina Błądzińska, Anna Opalińska, Cezary Lubas, Paula Folta, Kacper Szeląg, Joanna Kłosowska, Maciej Błądziński, Małgorzata Zach, Piotr Świerczek, & Antoni Kujawski. (2025). NOVEL APPROACHES IN OBESITY TREATMENT: THE PROMISE OF GENE THERAPIES. International Journal of Innovative Technologies in Social Science, (4(48). https://doi.org/10.31435/ijitss.4(48).2025.4362

Most read articles by the same author(s)