THE ROLE OF PHYSICAL ACTIVITY AND NUTRITION IN THE PREVENTION AND MANAGEMENT OF ALZHEIMER’S DISEASE
Abstract
Introduction and Purpose: Alzheimer’s disease is a developing public health concern with significant social and economic interference. Given the limited capability of current drug therapies, attention is shifting to the preventive strategies. The goal of this article is to review the evidence supporting multimodal lifestyle interventions—combining physical activity, dietary changes, and cognitive stimulation—as effective methods for reducing the risk and progression of Alzheimer’s disease.
Materials and Methods: This narrative review draws upon recent clinical studies, meta-analyses, and guidelines related to non-pharmacological interventions for Alzheimer’s disease. Sources include peer-reviewed articles focusing on physical exercise, dietary patterns, nutrient supplementation, and their combined impact on cognitive health.
Results: Evidence indicates that regular physical activity—especially aerobic and resistance training—supports memory, executive function, and cognitive performance, even in early stages of Alzheimer’s disease. Malnutrition is common in individuals with AD due to factors such as poor appetite, swallowing difficulties, and behavioral symptoms. Deficiencies in B vitamins, vitamin D, and omega-3 fatty acids are frequently observed and linked to faster cognitive decline. Tailored nutritional interventions, including adequate protein and caloric intake, may help stabilize cognitive and functional outcomes.
Conclusion: Multimodal lifestyle interventions—including regular physical activity, brain-healthy diets, and targeted nutritional support—offer a promising strategy for the prevention and management of Alzheimer’s disease. These approaches enhance cognitive function, address modifiable risk factors, and are most effective when implemented early and tailored to individual needs. Integrating such strategies into clinical care and public health policies could play a crucial role in reducing the future burden of Alzheimer’s disease.
References
Gaugler J., James B., Johnson T., Reimer J., Solis M., Weuve J., Buckley R.F., Hohman T.J. Alzheimer’s Association 2022 Alzheimer’s Disease Facts and Figures. Alzheimer’s Dement. 2022;18:700–789. doi: 10.1002/alz.12638.
Edwards G.A., III, Gamez N., Escobedo G., Jr., Calderon O., Moreno-Gonzalez I. Modifiable Risk Factors for Alzheimer’s Disease. Front. Aging Neurosci. 2019;11:146. doi: 10.3389/fnagi.2019.00146.
Dos Santos Picanco L.C., Ozela P.F., de Fatima de Brito Brito M., Pinheiro A.A., Padilha E.C., Braga F.S. Alzheimer's disease: a review from the pathophysiology to diagnosis, new perspectives for pharmacological treatment. Curr Med Chem. 2018;25:3141–3159. doi: 10.2174/0929867323666161213101126.
Garre-Olmo J. Epidemiology of Alzheimer’s disease and other dementias. Rev. Neurol. 2018;66:377–386. doi: 10.33588/rn.6611.2017519
Bagyinszky E., Youn Y.C., An S., Kim S. The Genetics of Alzheimer’s Disease. Clin. Interv. Aging. 2014;2014:535–551. doi: 10.2147/CIA.S51571.
Farlow M.R. Etiology and Pathogenesis of Alzheimer’s Disease. Am. J. Health Syst. Pharm. 1998;55:S5–S10. doi: 10.1093/ajhp/55.suppl_2.S5.
Hersi M., Irvine B., Gupta P., Gomes J., Birkett N., Krewski D. Risk Factors Associated with the Onset and Progression of Alzheimer’s Disease: A Systematic Review of the Evidence. NeuroToxicology. 2017;61:143–187. doi: 10.1016/j.neuro.2017.03.006.
Crous-Bou M., Minguillón C., Gramunt N., Molinuevo J.L. Alzheimer’s Disease Prevention: From Risk Factors to Early Intervention. Alzheimer’s Res. Ther. 2017;9:71. doi: 10.1186/s13195-017-0297-z.
Dominguez L.J., Veronese N., Vernuccio L., Catanese G., Inzerillo F., Salemi G., Barbagallo M. Nutrition, Physical Activity, and Other Lifestyle Factors in the Prevention of Cognitive Decline and Dementia. Nutrients. 2021;13:4080. doi: 10.3390/nu13114080.
Lee I.M., Shiroma E.J., Lobelo F., Puska P., Blair S.N., Katzmarzyk P.T. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. The Lancet. 2012;380:219–229. doi: 10.1016/S0140-6736(12)61031-9.
Sofi F., Valecchi D., Bacci D., Abbate R., Gensini G.F., Casini A. Physical activity and risk of cognitive decline: a meta-analysis of prospective studies. J Intern Med. 2011;269:107–117. doi: 10.1111/j.1365-2796.2010.02281.x.
De la Rosa A., Solana E., Corpas R., Bartrés-Faz D., Pallàs M., Vina J. Long-term exercise training improves memory in middle-aged men and modulates peripheral levels of BDNF and Cathepsin B. Sci Rep. 2019;9:3337. doi: 10.1038/s41598-019-40040-8.
Spirduso W.W., Clifford P. Replication of age and physical activity effects on reaction and movement time. J Gerontol. 1978;33:26–30. doi: 10.1093/geronj/33.1.26
Erickson K.I., Voss M.W., Prakash R.S., Basak C., Szabo A., Chaddock L. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108:3017–3022. doi: 10.1073/pnas.1015950108.
Rikli R.E., Edwards D.J. Effects of a three-year exercise program on motor function and cognitive processing speed in older women. Res Q Exerc Sport. 1991;62:61–67. doi: 10.1080/02701367.1991.10607519.
Landrigan J.F., Bell T., Crowe M., Clay O.J., Mirman D. Lifting cognition: a meta-analysis of effects of resistance exercise on cognition. Psychol Res. 2020;84:1167–1183. doi: 10.1007/s00426-019-01145-x.
Northey J.M., Cherbuin N., Pumpa K.L., Smee D.J., Rattray B. Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. Br J Sport Med. 2018;52:154–160. doi: 10.1136/bjsports-2016-096587.
Orgeta V., Mukadam N., Sommerlad A., Livingston G. The Lancet Commission on dementia prevention, intervention, and care: a call for action. Ir J Psychol Med. 2019;36:85–88. doi: 10.1017/ipm.2018.4.
Hamer M., Chida Y. Physical activity and risk of neurodegenerative disease: a systematic review of prospective evidence. Psychol Med. 2009;39:3–11. doi: 10.1017/S0033291708003681.
Buchman A.S., Boyle P.A., Yu L., Shah R.C., Wilson R.S., Bennett D.A. Total daily physical activity and the risk of AD and cognitive decline in older adults. Neurology. 2012;78:1323–1329. doi: 10.1212/WNL.0b013e3182535d35.
Baker L.D., Frank L.L., Foster-Schubert K., Green P.S., Wilkinson C.W., McTiernan A. Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol. 2010;67:71–79. doi: 10.1001/archneurol.2009.307
Rolland Y., Rival L., Pillard F., Lafont C., Rivére D., Albaréde J. Feasibility [corrected] of regular physical exercise for patients with moderate to severe Alzheimer disease. J Nutr Health Aging. 2000;4:109–113. doi: 10.1007/BF02805924
Arch Phys Med Rehabil. 2004;85:1694–1704. doi: 10.1016/j.apmr.2004.03.019.
Fiatarone Singh, M. A., Gates, N., Saigal, N., Wilson, G. C., Meiklejohn, J., Brodaty, H., Wen, W., Singh, N., Baune, B. T., Suo, C., Baker, M. K., Foroughi, N., Wang, Y., Mavros, Y., Lampit, A., & Valenzuela, M. (2014). The Study of Mental and Resistance Training (SMART) study—Resistance training and/or cognitive training in mild cognitive impairment: A randomized, double-blind, double-sham controlled trial. Journal of the American Medical Directors Association, 15(12), 873–880. doi: 10.1016/j.jamda.2014.09.010
An Y., Feng L., Zhang X., Wang Y., Wang Y., Tao L., Qin Z., Xiao R. Dietary Intakes and Biomarker Patterns of Folate, Vitamin B6, and Vitamin B12 Can Be Associated with Cognitive Impairment by Hypermethylation of Redox-Related Genes NUDT15 and TXNRD1. Clin. Epigenet. 2019;11:139. doi: 10.1186/s13148-019-0741-y.
Luchsinger J.A., Mayeux R. Dietary Factors and Alzheimer’s Disease. Lancet Neurol. 2004;3:579–587. doi: 10.1016/S1474-4422(04)00878-6.
Maffeis C., Cendon M., Tomasselli F., Tommasi M., Bresadola I., Fornari E., Morandi A., Olivieri F. Lipid and Saturated Fatty Acids Intake and Cardiovascular Risk Factors of Obese Children and Adolescents. Eur. J. Clin. Nutr. 2021;75:1109–1117. doi: 10.1038/s41430-020-00822-0.
Ogawa S. Nutritional Management of Older Adults with Cognitive Decline and Dementia: Nutrition and Cognitive Function in Elderly. Geriatr. Gerontol. Int. 2014;14:17–22. doi: 10.1111/ggi.12252.
Sun J., Wen S., Zhou J., Ding S. Association between Malnutrition and Hyperhomocysteine in Alzheimer’s Disease Patients and Diet Intervention of Betaine. J. Clin. Lab. Anal. 2017;31:e22090. doi: 10.1002/jcla.22090
Doorduijn A.S., de van der Schueren M.A.E., van de Rest O., de Leeuw F.A., Hendriksen H.M.A., Teunissen C.E., Scheltens P., van der Flier W.M., Visser M. Energy Intake and Expenditure in Patients with Alzheimer’s Disease and Mild Cognitive Impairment: The NUDAD Project. Alzheimer’s Res. Ther. 2020;12:116. doi: 10.1186/s13195-020-00687-2.
Gupta U.C., Gupta S.C. Optimizing Modifiable and Lifestyle-Related Factors in the Prevention of Dementia Disorders with Special Reference to Alzheimer, Parkinson and Autism Diseases. Curr. Nutr. Food Sci. 2020;16:900–911. doi: 10.2174/1573401315666190801120306.
Busquets O., Ettcheto M., Pallàs M., Beas-Zarate C., Verdaguer E., Auladell C., Folch J., Camins A. Long-Term Exposition to a High Fat Diet Favors the Appearance of β-Amyloid Depositions in the Brain of C57BL/6J Mice. A Potential Model of Sporadic Alzheimer’s Disease. Mech. Ageing Dev. 2017;162:38–45. doi: 10.1016/j.mad.2016.11.002.
Mazzei G., Ikegami R., Abolhassani N., Haruyama N., Sakumi K., Saito T., Saido T.C., Nakabeppu Y. A High-fat Diet Exacerbates the Alzheimer’s Disease Pathology in the Hippocampus of the AppNL−F/NL−F Knock-in Mouse Model. Aging Cell. 2021;20:e13429. doi: 10.1111/acel.13429.
Ota M., Matsuo J., Ishida I., Takano H., Yokoi Y., Hori H., Yoshida S., Ashida K., Nakamura K., Takahashi T., et al. Effects of a Medium-Chain Triglyceride-Based Ketogenic Formula on Cognitive Function in Patients with Mild-to-Moderate Alzheimer’s Disease. Neurosci. Lett. 2019;690:232–236. doi: 10.1016/j.neulet.2018.10.048.
Morris J.K., Vidoni E.D., Honea R.A., Burns J.M. Impaired Glycemia Increases Disease Progression in Mild Cognitive Impairment. Neurobiol. Aging. 2014;35:585–589. doi: 10.1016/j.neurobiolaging.2013.09.033.
Taylor M.K., Sullivan D.K., Swerdlow R.H., Vidoni E.D., Morris J.K., Mahnken J.D., Burns J.M. A High-Glycemic Diet Is Associated with Cerebral Amyloid Burden in Cognitively Normal Older Adults. Am. J. Clin. Nutr. 2017;106:1463–1470. doi: 10.3945/ajcn.117.162263.
Yeh T.-S., Yuan C., Ascherio A., Rosner B.A., Blacker D., Willett W.C. Long-Term Dietary Protein Intake and Subjective Cognitive Decline in US Men and Women. Am. J. Clin. Nutr. 2022;115:199–210. doi: 10.1093/ajcn/nqab236.
Shang X., Hill E., Li Y., He M. Energy and Macronutrient Intakes at Breakfast and Cognitive Declines in Community-Dwelling Older Adults: A 9-Year Follow-up Cohort Study. Am. J. Clin. Nutr. 2021;113:1093–1103. doi: 10.1093/ajcn/nqaa403.
Mielech A., Puścion-Jakubik A., Markiewicz-Żukowska R., Socha K. Vitamins in Alzheimer’s Disease—Review of the Latest Reports. Nutrients. 2020;12:3458. doi: 10.3390/nu12113458.
An Y., Feng L., Zhang X., Wang Y., Wang Y., Tao L., Qin Z., Xiao R. Dietary Intakes and Biomarker Patterns of Folate, Vitamin B6, and Vitamin B12 Can Be Associated with Cognitive Impairment by Hypermethylation of Redox-Related Genes NUDT15 and TXNRD1. Clin. Epigenet. 2019;11:139. doi: 10.1186/s13148-019-0741-y.
Alzheimer’s Association Calcium Hypothesis Workgroup. Khachaturian Z.S. Calcium Hypothesis of Alzheimer’s Disease and Brain Aging: A Framework for Integrating New Evidence into a Comprehensive Theory of Pathogenesis. Alzheimer’s Dement. 2017;13:178. doi: 10.1016/j.jalz.2016.12.006.
Simonetto M., Infante M., Sacco R.L., Rundek T., Della-Morte D. A Novel Anti-Inflammatory Role of Omega-3 PUFAs in Prevention and Treatment of Atherosclerosis and Vascular Cognitive Impairment and Dementia. Nutrients. 2019;11:2279. doi: 10.3390/nu11102279.
Holland T.M., Agarwal P., Wang Y., Leurgans S.E., Bennett D.A., Booth S.L., Morris M.C. Dietary Flavonols and Risk of Alzheimer Dementia. Neurology. 2020;94:e1749–e1756. doi: 10.1212/WNL.0000000000008981.
Kaarin J Anstey, Nicolas Cherbuin, Sarang Kim, Mitchell McMaster, Catherine D'Este, Nicola Lautenschlager, George Rebok, Ian McRae, Susan J Torres, Kay L Cox, Constance Dimity Pond An Internet-Based Intervention Augmented With a Diet and Physical Activity Consultation to Decrease the Risk of Dementia in At-Risk Adults in a Primary Care Setting: Pragmatic Randomized Controlled Trial J Med Internet Res. 2020 Sep; 22(9): e19431. Published online 2020 Sep 24. doi: 10.2196/19431
Dominguez L.J., Veronese N., Vernuccio L., Catanese G., Inzerillo F., Salemi G., Barbagallo M. Nutrition, Physical Activity, and Other Lifestyle Factors in the Prevention of Cognitive Decline and Dementia. Nutrients. 2021;13:4080. doi: 10.3390/nu13114080.
Crous-Bou M., Minguillón C., Gramunt N., Molinuevo J.L. Alzheimer’s Disease Prevention: From Risk Factors to Early Intervention. Alzheimer’s Res. Ther. 2017;9:71. doi: 10.1186/s13195-017-0297-z.
Views:
23
Downloads:
12
Copyright (c) 2025 Iwona Górnicka, Anita Janda, Radosław Pastuszek, Magdalena Rosiewicz, Marcin Durowicz, Aleksandra Pastuszek, Karolina Bieńkowska, Jan Drzymała, Urszula Kierepka, Sylwia Bartolik

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

