EFFECTS OF SUPPLEMENTATION, DIET AND FASTING ON INSULIN RESISTANCE

Keywords: Insulin, Insulin Sensitivity, Lifestyle Modification, Glucose Metabolism, Nutritional Interventions, Insulin Resistance, Supplementation, Diet, Intermittent Fasting

Abstract

Insulin resistance is a condition in which the decreased tissue sensitivity to insulin, which consequently leads to impaired glucose metabolism. This condition is the starting point for many chronic diseases, primarily type 2 diabetes, metabolic syndrome, PCOS, NAFLD and cardiovascular disease. This paper discusses the current state of knowledge on the effects of supplementation, diet and intermittent fasting on improving insulin sensitivity. The pathophysiological mechanisms of insulin resistance, diagnostic methods (including HOMA-IR, OGTT, metabolic clamp method), and its impact on the development and course of chronic diseases are presented.

Special attention was given to supplements such as vitamin D, magnesium, zinc, Myo-inositol and omega-3 fatty acids, which through a variety of mechanisms can support glucose metabolism and improve insulin action. Also discussed was the role of caloric restriction and intermittent fasting, which have positive effects on body weight, metabolic profile and, most importantly, insulin sensitivity.

The aim of the study was to highlight the importance of lifestyle modification and dietary interventions in the prevention and treatment of insulin resistance and its consequences. Due to the increasing prevalence of these disease entities in the general population, including among increasingly younger patients, it is necessary to implement appropriate preventive and therapeutic strategies in daily clinical practice.

References

Lee, S., Park, S., & Choi, C. S. (2021d). Insulin resistance: From mechanisms to therapeutic strategies. Diabetes & Metabolism Journal, 46(1), 15–37. https://doi.org/10.4093/dmj.2021.0280

Gastaldelli, A. (2022b). Measuring and estimating insulin resistance in clinical and research settings. Obesity, 30(8), 1549–1563. https://doi.org/10.1002/oby.23503

Szablewski, L. (2024). Changes in Cells Associated with Insulin Resistance. International Journal of Molecular Sciences, 25(4), 2397. https://doi.org/10.3390/ijms25042397

Calle, C., Maestro, B., & García-Arencibia, M. (2008). Genomic actions of 1,25-dihydroxyvitamin D3 on insulin receptor gene expression, insulin receptor number and insulin activity in the kidney, liver and adipose tissue of streptozotocin-induced diabetic rats. BMC Molecular Biology, 9(1), 65. https://doi.org/10.1186/1471-2199-9-65

Argano, C., Mirarchi, L., Amodeo, S., Orlando, V., Torres, A., & Corrao, S. (2023b). The role of vitamin D and its molecular bases in insulin resistance, diabetes, metabolic syndrome, and cardiovascular disease: state of the art. International Journal of Molecular Sciences, 24(20), 15485. https://doi.org/10.3390/ijms242015485

Rafiq, S., & Jeppesen, P. B. (2021). Vitamin D Deficiency Is Inversely Associated with Homeostatic Model Assessment of Insulin Resistance. Nutrients, 13(12), 4358. https://doi.org/10.3390/nu13124358

Mo, M., Shao, B., Xin, X., Luo, W., Si, S., Jiang, W., Wang, S., Shen, Y., Wu, J., & Yu, Y. (2021). The Association of Gene Variants in the Vitamin D Metabolic Pathway and Its Interaction with Vitamin D on Gestational Diabetes Mellitus: A Prospective Cohort Study. Nutrients, 13(12), 4220. https://doi.org/10.3390/nu13124220

Argano, C., Mirarchi, L., Amodeo, S., Orlando, V., Torres, A., & Corrao, S. (2023). The role of vitamin D and its molecular bases in insulin resistance, diabetes, metabolic syndrome, and cardiovascular disease: state of the art. International Journal of Molecular Sciences, 24(20), 15485. https://doi.org/10.3390/ijms242015485

Wang M., Chen Z., Hu Y., Wang Y., Wu Y., Lian F., Li H., Yang J., Xu X. The Effects of Vitamin D Supplementation on Glycemic Control and Maternal-Neonatal Outcomes in Women with Established Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis. Clin. Nutr. 2021;40:3148–3157. doi: 10.1016/j.clnu.2020.12.016

Huang S., Fu J., Zhao R., Wang B., Zhang M., Li L., Shi C. The Effect of Combined Supplementation with Vitamin D and Omega-3 Fatty Acids on Blood Glucose and Blood Lipid Levels in Patients with Gestational Diabetes. Ann. Palliat. Med. 2021;10:5652–5658. doi: 10.21037/apm-21-1018.

Christiano Argano, Mirarchi, L., Amodeo, S., Orlando, V., Torres, A., & Corrao, S. (2023). The Role of Vitamin D and Its Molecular Bases in Insulin Resistance, Diabetes, Metabolic Syndrome, and

Cardiovascular Disease: State of the Art. International Journal of Molecular Sciences, 24(20), 15485–15485. https://doi.org/10.3390/ijms242015485

Günther, T. (2011). Magnesium in bone and the magnesium load test. Magnesium Research, 24(4), 223–224. https://doi.org/10.1684/mrh.2011.0297

Saris, N.-E. L., Mervaala, E., Karppanen, H., Khawaja, J. A., & Lewenstam, A. (2000). Magnesium. Clinica Chimica Acta, 294(1-2), 1–26. https://doi.org/10.1016/s0009-8981(99)00258-2

Barbagallo, M. (2015). Magnesium and type 2 diabetes. World Journal of Diabetes, 6(10), 1152. https://doi.org/10.4239/wjd.v6.i10.115

McCarty, M. F. (2005). Nutraceutical resources for diabetes prevention – an update. Medical Hypotheses, 64(1), 151–158. https://doi.org/10.1016/j.mehy.2004.03.036

Dubey, P., Thakur, V., & Chattopadhyay, M. (2020). Role of minerals and trace elements in diabetes and insulin resistance. Nutrients, 12(6), 1864. https://doi.org/10.3390/nu12061864

Marreiro, D. D. N., Geloneze, B., Tambascia, M. A., Lerário, A. C., Halpern, A., & Cozzolino, S. M. F. (2006). Effect of zinc supplementation on serum leptin levels and insulin resistance of obese women. Biological Trace Element Research, 112(2), 109–118. https://doi.org/10.1385/bter:112:2:109

DiNicolantonio, J. J., & O’Keefe, J. H. (2022). Myo-inositol for insulin resistance, metabolic syndrome, polycystic ovary syndrome and gestational diabetes. Open Heart, 9(1), e001989. https://doi.org/10.1136/openhrt-2022-001989

González-Rodríguez, L. G., Aparicio, A., López-Sobaler, A. M., & Ortega, R. M. (2013). Omega 3 and omega 6 fatty acids intake and dietary sources in a representative sample of Spanish adults. International Journal for Vitamin and Nutrition Research, 83(1), 36–47. https://doi.org/10.1024/0300-9831/a000143

Gammone, M. A., Riccioni, G., Parrinello, G., & D’Orazio, N. (2018). Omega-3 polyunsaturated fatty acids: benefits and endpoints in sport. Nutrients, 11(1), 46. https://doi.org/10.3390/nu11010046

Leonardi, B. F., Gosmann, G., & Zimmer, A. R. (2020). Modeling Diet‐Induced Metabolic Syndrome in rodents. Molecular Nutrition & Food Research, 64(22). https://doi.org/10.1002/mnfr.202000249

Przemysława Jarosz-Chobot, B. G.-O. Ocena wrażliwości na insulinę. medycyna praktyczna dla lekarzy.

Wadden, T. A., Tronieri, J. S., & Butryn, M. L. (2020). Lifestyle modification approaches for the treatment of obesity in adults. American Psychologist, 75(2), 235–251. https://doi.org/10.1037/amp0000517

Handbook of Obesity Treatment, second edition. (n.d.). Google Books. https://books.google.pl/books?hl=pl&lr=&id=P2s8DwAAQBAJ&oi=fnd&pg=PP1&ots=LjyvslAFXq&sig=r09hiCD40V6pqQAdUAYDZkIyChs&redir_esc=y#v=onepage&q&f=false

Napoleão, A., Fernandes, L., Miranda, C., & Marum, A. P. (2021). Effects of Calorie Restriction on Health Span and Insulin Resistance: Classic Calorie Restriction Diet vs. Ketosis-Inducing Diet. Nutrients, 13(4), 1302. https://doi.org/10.3390/nu13041302

Kraus, W. E., Bhapkar, M., Huffman, K. M., Pieper, C. F., Das, S. K., Redman, L. M., Villareal, D. T., Rochon, J., Roberts, S. B., Ravussin, E., Holloszy, J. O., & Fontana, L. (2019). 2 years of calorie restriction and cardiometabolic risk (CALERIE): exploratory outcomes of a multicentre, phase 2, randomised controlled trial. The Lancet Diabetes & Endocrinology, 7(9), 673–683. https://doi.org/10.1016/s2213-8587(19)30151-2

Most, J., Tosti, V., Redman, L. M., & Fontana, L. (2016). Calorie restriction in humans: An update. Ageing Research Reviews, 39, 36–45. https://doi.org/10.1016/j.arr.2016.08.005

Makris A, & Foster GD (2011). Dietary approaches to the treatment of obesity. Psychiatric Clinics of North America, 34(4), 813–827.

Antoni, R., Johnston, K. L., Collins, A. L., & Robertson, M. D. (2017). Effects of intermittent fasting on glucose and lipid metabolism. Proceedings of the Nutrition Society, 76(3), 361–368. https://doi.org/10.1017/s0029665116002986

Vasim, I., Majeed, C. N., & DeBoer, M. D. (2022). Intermittent fasting and metabolic health. Nutrients, 14(3), 631. https://doi.org/10.3390/nu14030631

Albosta, M., & Bakke, J. (2021). Intermittent fasting: is there a role in the treatment of diabetes? A review of the literature and guide for primary care physicians. Clinical Diabetes and Endocrinology, 7(1). https://doi.org/10.1186/s40842-020-00116-1

Halberg, N., Henriksen, M., Söderhamn, N., Stallknecht, B., Ploug, T., Schjerling, P., & Dela, F. (2005). Effect of intermittent fasting and refeeding on insulin action in healthy men. Journal of Applied Physiology, 99(6), 2128–2136. https://doi.org/10.1152/japplphysiol.00683.2005

Angelidi, A. M., Filippaios, A., & Mantzoros, C. S. (2021). Severe insulin resistance syndromes. Journal of Clinical Investigation, 131(4). https://doi.org/10.1172/jci142245

Lee, S., Park, S., & Choi, C. S. (2021). Insulin resistance: From mechanisms to therapeutic strategies. Diabetes & Metabolism Journal, 46(1), 15–37. https://doi.org/10.4093/dmj.2021.0280

Alagiakrishnan, K., & Halverson, T. (2024). Role of peripheral and central insulin resistance in neuropsychiatric disorders. Journal of Clinical Medicine, 13(21), 6607. https://doi.org/10.3390/jcm13216607

Park, S. S., & Seo, Y. (2020). Excess accumulation of lipid impairs insulin sensitivity in skeletal muscle. International Journal of Molecular Sciences, 21(6), 1949. https://doi.org/10.3390/ijms21061949

Bevilacqua, A., & Bizzarri, M. (2018). Inositols in insulin signaling and glucose metabolism. International Journal of Endocrinology, 2018, 1–8. https://doi.org/10.1155/2018/1968450

Croze, M. L., Géloën, A., & Soulage, C. O. (2015). Abnormalities inmyo-inositol metabolism associated with type 2 diabetes in mice fed a high-fat diet: benefits of a dietarymyo-inositol supplementation. British Journal of Nutrition, 113(12), 1862–1875. https://doi.org/10.1017/s000711451500121x

Clements, R. S., & Darnell, B. (1980). Myo-inositol content of common foods: development of a high-myo-inositol diet. American Journal of Clinical Nutrition, 33(9), 1954–1967. https://doi.org/10.1093/ajcn/33.9.1954

Greene, D. A., & Lattimer, S. A. (1982). Sodium- and energy-dependent uptake of myo-inositol by rabbit peripheral nerve. Competitive inhibition by glucose and lack of an insulin effect. Journal of Clinical Investigation, 70(5), 1009–1018. https://doi.org/10.1172/jci110688

Dinicola, S., Minini, M., Unfer, V., Verna, R., Cucina, A., & Bizzarri, M. (2017). Nutritional and Acquired Deficiencies in Inositol Bioavailability. Correlations with Metabolic Disorders. International Journal of Molecular Sciences, 18(10), 2187. https://doi.org/10.3390/ijms18102187

Zeng, P., Cai, X., Yu, X., Huang, L., & Chen, X. (2023). HOMA-IR is an effective biomarker of non-alcoholic fatty liver disease in non-diabetic population. Journal of International Medical Research, 51(10). https://doi.org/10.1177/03000605231204462

Garaulet, M., Ordovás, J. M., & Madrid, J. A. (2010). The chronobiology, etiology and pathophysiology of obesity. International Journal of Obesity, 34(12), 1667–1683. https://doi.org/10.1038/ijo.2010.118

Saklayen, M. G. (2018). The global epidemic of the metabolic syndrome. Current Hypertension Reports, 20(2). https://doi.org/10.1007/s11906-018-0812-z

Barazzoni, R., Cappellari, G. G., Ragni, M., & Nisoli, E. (2018). Insulin resistance in obesity: an overview of fundamental alterations. Eating and Weight Disorders - Studies on Anorexia Bulimia and Obesity, 23(2), 149–157. https://doi.org/10.1007/s40519-018-0481-6

Xu, Y., & Qiao, J. (2022). Association of Insulin Resistance and Elevated Androgen Levels with Polycystic Ovarian Syndrome (PCOS): A Review of Literature. Journal of Healthcare Engineering, 2022, 1–13. https://doi.org/10.1155/2022/9240569

Kosmas, C. E., Bousvarou, M. D., Kostara, C. E., Papakonstantinou, E. J., Salamou, E., & Guzman, E. (2023). Insulin resistance and cardiovascular disease. Journal of International Medical Research, 51(3). https://doi.org/10.1177/03000605231164548

Da Silva, A. A., Carmo, J. M. D., Li, X., Wang, Z., Mouton, A. J., & Hall, J. E. (2020). Role of hyperinsulinemia and insulin resistance in hypertension: Metabolic Syndrome revisited. Canadian Journal of Cardiology, 36(5), 671–682. https://doi.org/10.1016/j.cjca.2020.02.066

Yoon, J. H., Hwang, J., Son, S. U., Choi, J., You, S., Park, H., Cha, S., & Maeng, S. (2023). How can insulin resistance cause Alzheimer’s disease? International Journal of Molecular Sciences, 24(4), 3506. https://doi.org/10.3390/ijms24043506

Oral glucose tolerance testing. (2012, June 1). PubMed. https://pubmed.ncbi.nlm.nih.gov/22675678/

Tang, Q., Li, X., Song, P., & Xu, L. (2015). Optimal cut-off values for the homeostasis model assessment of insulin resistance (HOMA-IR) and pre-diabetes screening: Developments in research and prospects for the future. Drug Discoveries & Therapeutics, 9(6), 380–385. https://doi.org/10.5582/ddt.2015.01207

Views:

26

Downloads:

18

Published
2025-12-05
Citations
How to Cite
Karolina Bieńkowska, Magdalena Rosiewicz, Urszula Kierepka, Jan Drzymała, Anita Janda, Sylwia Bartolik, Marcin Durowicz, Iwona Górnicka, & Aleksandra Pastuszek. (2025). EFFECTS OF SUPPLEMENTATION, DIET AND FASTING ON INSULIN RESISTANCE. International Journal of Innovative Technologies in Social Science, (4(48). https://doi.org/10.31435/ijitss.4(48).2025.4097

Most read articles by the same author(s)