ASSOCIATION OF DIABETES MELLITUS WITH REACTION TIME, COGNITIVE FUNCTION AND PHYSICAL FITNESS
Abstract
Background: Diabetes mellitus is a chronic metabolic disorder with systemic complications that may impair cognitive and motor functions. Simple reaction time (SRT) is a measure of sensory-motor performance and an important indicator of central nervous system processing speed.
Objective: This study aimed to investigate the effect of diabetes mellitus on simple reaction time and cognitive abilities decline comparing results between individuals with diabetes and healthy controls.
Methods: A review paper based on studies found on PubMed and Google Scholar. The majority of metanalyses and studies involve two groups: a diabetic group (patients diagnosed with type 1 or type 2 diabetes) and a non-diabetic control group. Participants performed a standardized computer-based simple reaction time test. Reaction times were measured and statistically analyzed to assess differences between the groups.
Results: The results indicated that individuals with diabetes had significantly longer simple reaction times compared to the control group. The findings suggest that diabetes mellitus negatively affects sensory-motor integration and neural processing speed.
Conclusion: The study concludes that diabetes mellitus can impair cognitive-motor function as reflected in prolonged simple reaction times. This highlights the need for cognitive assessment and monitoring in diabetic patients as part of their routine clinical care.
References
Pfeiffer, A. F. H., & Klein, H. H. (2014). The treatment of type 2 diabetes. Deutsches Ärzteblatt International. https://doi.org/10.3238/arztebl.2014.0069
World Health Organization: WHO & World Health Organization: WHO. (2024, November 14). Diabetes. https://www.who.int/news-room/fact-sheets/detail/diabetes
Petersmann, A., Müller-Wieland, D., Müller, U. A., Landgraf, R., Nauck, M., Freckmann, G., Heinemann, L., & Schleicher, E. (2014). Definition, Classification and diagnosis of diabetes mellitus. Experimental and Clinical Endocrinology & Diabetes, 122(07), 384–386. https://doi.org/10.1055/s-0034-1366278
Diagnosis and classification of diabetes mellitus. (2008). Diabetes Care, 32(Supplement_1), S62–S67. https://doi.org/10.2337/dc09-s062
Analysis of mortality in French diabetic patients from death certificates: a comparative study. (1999, November 1). PubMed. https://pubmed.ncbi.nlm.nih.gov/10592863/
Maahs, D. M., & Rewers, M. (2006). Mortality and renal disease in Type 1 Diabetes Mellitus—Progress made, more to be done. The Journal of Clinical Endocrinology & Metabolism, 91(10), 3757–3759. https://doi.org/10.1210/jc.2006-1730
Sustained effect of intensive treatment of Type 1 diabetes mellitus on development and progression of diabetic nephropathy. (2003). JAMA, 290(16), 2159. https://doi.org/10.1001/jama.290.16.2159
Marca, V., Gianchecchi, E., & Fierabracci, A. (2018). Type 1 Diabetes and its Multi-Factorial Pathogenesis: The putative role of NK cells. International Journal of Molecular Sciences, 19(3), 794. https://doi.org/10.3390/ijms19030794
Thorsby, E., & Lie, B. A. (2005). HLA associated genetic predisposition to autoimmune diseases: Genes involved and possible mechanisms. Transplant Immunology, 14(3–4), 175–182. https://doi.org/10.1016/j.trim.2005.03.021
Bluestone, J. A., Herold, K., & Eisenbarth, G. (2010). Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature, 464(7293), 1293–1300. https://doi.org/10.1038/nature08933
Lie, B. A., Todd, J. A., Pociot, F., Nerup, J., Akselsen, H. E., Joner, G., Dahl-Jørgensen, K., Rønningen, K. S., Thorsby, E., & Undlien, D. E. (1999). The predisposition to Type 1 diabetes linked to the human leukocyte antigen complex includes at least one Non–Class II gene. The American Journal of Human Genetics, 64(3), 793–800. https://doi.org/10.1086/302283
Zajec, A., Podkrajšek, K. T., Tesovnik, T., Šket, R., Kern, B. Č., Bizjan, B. J., Schweiger, D. Š., Battelino, T., & Kovač, J. (2022). Pathogenesis of Type 1 diabetes: Established facts and new insights. Genes, 13(4), 706. https://doi.org/10.3390/genes13040706
Toniolo, A., Cassani, G., Puggioni, A., Rossi, A., Colombo, A., Onodera, T., & Ferrannini, E. (2018b). The diabetes pandemic and associated infections: suggestions for clinical microbiology. Reviews in Medical Microbiology, 30(1), 1–17. https://doi.org/10.1097/mrm.0000000000000155
Van Belle, T. L., Coppieters, K. T., & Von Herrath, M. G. (2011). Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiological Reviews, 91(1), 79–118. https://doi.org/10.1152/physrev.00003.2010
Lachmandas, E., Thiem, K., Van Den Heuvel, C., Hijmans, A., De Galan, B. E., Tack, C. J., Netea, M. G., Van Crevel, R., & Van Diepen, J. A. (2017). Patients with type 1 diabetes mellitus have impaired IL-1β production in response to Mycobacterium tuberculosis. European Journal of Clinical Microbiology & Infectious Diseases, 37(2), 371–380. https://doi.org/10.1007/s10096-017-3145-y
Kousathana, F., Georgitsi, M., Lambadiari, V., Giamarellos-Bourboulis, E. J., Dimitriadis, G., & Mouktaroudi, M. (2016). Defective production of interleukin-1 beta in patients with type 2 diabetes mellitus: Restoration by proper glycemic control. Cytokine, 90, 177–184. https://doi.org/10.1016/j.cyto.2016.11.009
Chen, J., Feigenbaum, L., Awasthi, P., Butcher, D. O., Anver, M. R., Golubeva, Y. G., Bamford, R., Zhang, X., St Claire, M. B., Thomas, C. J., Discepolo, V., Jabri, B., & Waldmann, T. A. (2013). Insulin-dependent diabetes induced by pancreatic beta cell expression of IL-15 and IL-15Rα. Proceedings of the National Academy of Sciences, 110(33), 13534–13539. https://doi.org/10.1073/pnas.1312911110
Bayer, A. L., & Fraker, C. A. (2017). The folate cycle as a cause of natural killer cell dysfunction and viral etiology in Type 1 diabetes. Frontiers in Endocrinology, 8. https://doi.org/10.3389/fendo.2017.00315
Chiba, H., Fukui, A., Fuchinoue, K., Funamizu, A., Tanaka, K., & Mizunuma, H. (2016). Expression of Natural Cytotoxicity Receptors on and Intracellular Cytokine Production by NK Cells in Women with Gestational Diabetes Mellitus. American Journal of Reproductive Immunology, 75(5), 529–538. https://doi.org/10.1111/aji.12491
Saltiel, A. R. (2015). Insulin signaling in the control of glucose and lipid homeostasis. Handbook of Experimental Pharmacology, 51–71. https://doi.org/10.1007/164_2015_14
Vargas, E., Joy, N. V., & Sepulveda, M. a. C. (2022, September 26). Biochemistry, insulin metabolic effects. StatPearls - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/sites/books/NBK525983
Aronoff, S. L., Berkowitz, K., Shreiner, B., & Want, L. (2004b). Glucose metabolism and regulation: Beyond insulin and glucagon. Diabetes Spectrum, 17(3), 183–190. https://doi.org/10.2337/diaspect.17.3.183
Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K. B., Ostolaza, H., & Martín, C. (2020). Pathophysiology of Type 2 diabetes mellitus. International Journal of Molecular Sciences, 21(17), 6275. https://doi.org/10.3390/ijms21176275
Guo, H., Wu, H., & Li, Z. (2023). The pathogenesis of diabetes. International Journal of Molecular Sciences, 24(8), 6978. https://doi.org/10.3390/ijms24086978
Solis-Herrera, C., Triplitt, C., Cersosimo, E., & DeFronzo, R. A. (2021, September 27). Pathogenesis of type 2 diabetes mellitus. Endotext - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/sites/books/NBK279115/
Dludla, P. V., Mabhida, S. E., Ziqubu, K., Nkambule, B. B., Mazibuko-Mbeje, S. E., Hanser, S., Basson, A. K., Pheiffer, C., & Kengne, A. P. (2023). Pancreatic β-cell dysfunction in type 2 diabetes: Implications of inflammation and oxidative stress. World Journal of Diabetes, 14(3), 130–146. https://doi.org/10.4239/wjd.v14.i3.130
Liu, C., Chen, H., Ma, Y., Zhang, L., Chen, L., Huang, J., Zhao, Z., Jiang, H., & Kong, J. (2025). Clinical metabolomics in type 2 diabetes mellitus: from pathogenesis to biomarkers. Frontiers in Endocrinology, 16. https://doi.org/10.3389/fendo.2025.1501305
Wong, M. C. S., Huang, J., Wang, J., Chan, P. S. F., Lok, V., Chen, X., Leung, C., Wang, H. H. X., Lao, X. Q., & Zheng, Z. (2020). Global, regional and time-trend prevalence of central obesity: a systematic review and meta-analysis of 13.2 million subjects. European Journal of Epidemiology, 35(7), 673–683. https://doi.org/10.1007/s10654-020-00650-3
Europe PMC. (n.d.-b). Europe PMC. https://europepmc.org/article/MED/23961321
Tian, X., Wang, L., Zhong, L., Zhang, K., Ge, X., Luo, Z., Zhai, X., & Liu, S. (2025). The research progress and future directions in the pathophysiological mechanisms of type 2 diabetes mellitus from the perspective of precision medicine. Frontiers in Medicine, 12. https://doi.org/10.3389/fmed.2025.1555077
Diagnosis and classification of diabetes mellitus. (2008c). Diabetes Care, 32(Supplement_1), S62–S67. https://doi.org/10.2337/dc09-s062
Seino, Y., Nanjo, K., Tajima, N., Kadowaki, T., Kashiwagi, A., Araki, E., Ito, C., Inagaki, N., Iwamoto, Y., Kasuga, M., Hanafusa, T., Haneda, M., & Ueki, K. (2010). Report of the Committee on the Classification and Diagnostic Criteria of Diabetes mellitus. Journal of Diabetes Investigation, 1(5), 212–228. https://doi.org/10.1111/j.2040-1124.2010.00074.x
Bsn, R. Z., RN. (2025, May 19). Diabetes and Leg Pain: What's the Connection? Verywell Health. https://www.verywellhealth.com/type-2-diabetes-leg-pain-6541316?utm_source=chatgpt.com
Edwards, J. L., Vincent, A. M., Cheng, H. T., & Feldman, E. L. (2008). Diabetic neuropathy: Mechanisms to management. Pharmacology & Therapeutics, 120(1), 1–34. https://doi.org/10.1016/j.pharmthera.2008.05.005
Pop-Busui, R., Boulton, A. J., Feldman, E. L., Bril, V., Freeman, R., Malik, R. A., Sosenko, J. M., & Ziegler, D. (2016). Diabetic Neuropathy: A position statement by the American Diabetes Association. Diabetes Care, 40(1), 136–154. https://doi.org/10.2337/dc16-2042
Shaw, I. (2024, May 24). The subtle warning sign of diabetes you might notice when you stand up – YEARS before other symptoms s. . . The Sun. https://www.thesun.co.uk/health/28109984/warning-sign-diabetes-neuropathy-standing-up
Finnerup, N. B., Attal, N., Haroutounian, S., McNicol, E., Baron, R., Dworkin, R. H., Gilron, I., Haanpää, M., Hansson, P., Jensen, T. S., Kamerman, P. R., Lund, K., Moore, A., Raja, S. N., Rice, A. S. C., Rowbotham, M., Sena, E., Siddall, P., Smith, B. H., & Wallace, M. (2015). Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. The Lancet Neurology, 14(2), 162–173. https://doi.org/10.1016/s1474-4422(14)70251-0
Pruszynski, J. A., King, G. L., Boisse, L., Scott, S. H., Flanagan, J. R., & Munoz, D. P. (2010). Stimulus‐locked responses on human arm muscles reveal a rapid neural pathway linking visual input to arm motor output. European Journal of Neuroscience, 32(6), 1049–1057. https://doi.org/10.1111/j.1460-9568.2010.07380.x
Whitmer, K. H. (2021, February 1). Auditory and visual pathways. Pressbooks. https://iastate.pressbooks.pub/curehumanphysiology/chapter/auditory-and-visual-pathways
Shelton, Jose & Kumar, Gideon. (2010). Comparison between Auditory and Visual Simple Reaction Times. Neuroscience & Medicine. 1. 30-32. 10.4236/nm.2010.11004.
Fujianti, A. (n.d.-b). nm. Scribd. https://ru.scribd.com/document/426733776
Kateřina Bucsuházy, Marek Semela, Case Study: Reaction Time of Children According to Age, Procedia Engineering, Volume 187, 2017, Pages 408-413, ISSN 1877-7058, https://doi.org/10.1016/j.proeng.2017.04.393.
Kiderman, A., Coto, J., Gibson, L. C., Ashmore, R. C., Braverman, A., Williams, E., Finamore, A. M. F., Yunis, V., & Hoffer, M. E. (2025). Oculomotor, vestibular, reaction time, and cognitive (OVRT-C) responses in 7- to 17-year-old children. Experimental Brain Research, 243(5). https://doi.org/10.1007/s00221-025-07005-y
Favilla, M. (2005). Reaching movements in children: accuracy and reaction time development. Experimental Brain Research, 169(1), 122–125. https://doi.org/10.1007/s00221-005-0291-8Dove, A., Shang, Y., Xu, W., Grande, G., Laukka, E. J., Fratiglioni, L., & Marseglia, A. (2021). The impact of diabetes on cognitive impairment and its progression to dementia. Alzheimer S & Dementia, 17(11), 1769–1778. https://doi.org/10.1002/alz.12482
Gudala, K., Bansal, D., Schifano, F., & Bhansali, A. (2013). Diabetes mellitus and risk of dementia: A meta‐analysis of prospective observational studies. Journal of Diabetes Investigation, 4(6), 640–650. https://doi.org/10.1111/jdi.12087
Comparative study of auditory and visual reaction time in patients of Type 2 diabetes mellitus on allopathic treatment and in healthy controls. (n.d.). Europub. https://europub.co.uk/articles/comparative-study-of-auditory-and-visual-reaction-time-in-patients-of-type-2-diabetes-mellitus-on-allopathic-treatment-and-in-healthy-controls-A-370292?utm_source=chatgpt.com
Richerson, S. J., Robinson, C. J., & Shum, J. (2005). A comparative study of reaction times between type II diabetics and non-diabetics. BioMedical Engineering OnLine, 4(1). https://doi.org/10.1186/1475-925x-4-12
M, M., Sembian, U., Babitha, N, E., & K, M. (2014b). Study of Auditory, Visual Reaction Time and Glycemic Control ( H BA 1 C ) in chronic type I I diabetes mellitus. JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH. https://doi.org/10.7860/jcdr/2014/8906.4865
Pramanik, T., Dhakal, R., & Pandit, R. (2019). Visual Reaction Time in People with and without Diabetes - A Comparative Study. Nepal Medical College Journal, 21(2), 100–103. https://doi.org/10.3126/nmcj.v21i2.25107
Khode, V., Sindhur, J., Ramdurg, S., Ruikar, K., & Nallulwar, S. (2015). Chronoscopic reading in whole body reaction times can be a tool in detecting cognitive dysfunction in type 2 diabetics: A case control study. Journal of Medical Society, 29(2), 69. https://doi.org/10.4103/0972-4958.163188
User, S. (n.d.). Impact of duration of diabetes on Audio-Visual reaction time in Type 2 diabetes mellitus patients. https://jmscr.igmpublication.org/home/index.php/archive/99-volume-4-issue-02-feb-2016/548-impact-of-duration-of-diabetes-on-audio-visual-reaction-time-in-type-2-diabetes-mellitus-patients?utm_source=chatgpt.com
“Effect of Duration of Disease and Glycemic Control on Attention, Executive Function and Visual Reaction Time in Type 2 Diabetes Mellitus Patients of Bangalore” (2020) International Journal of Physiology, 8(1), pp. 106–109. doi:10.37506/ijop.v8i1.28.
Holmes, C. S., Tsalikian, E., & Yamada, T. (1988). Blood Glucose Control and Visual and Auditory Attention in Men with Insulin‐dependent Diabetes. Diabetic Medicine, 5(7), 634–639. https://doi.org/10.1111/j.1464-5491.1988.tb01071.x
Sakib, M. N., Ramezan, R., & Hall, P. A. (2023). Diabetes status and cognitive function in middle-aged and older adults in the Canadian longitudinal study on aging. Frontiers in Endocrinology, 14. https://doi.org/10.3389/fendo.2023.1293988
Lin, Y., Gong, Z., Ma, C., Wang, Z., & Wang, K. (2023). Relationship between glycemic control and cognitive impairment: A systematic review and meta-analysis. Frontiers in Aging Neuroscience, 15. https://doi.org/10.3389/fnagi.2023.1126183
Garfield, V., Farmaki, A., Fatemifar, G., Eastwood, S. V., Mathur, R., Rentsch, C. T., Denaxas, S., Bhaskaran, K., Smeeth, L., & Chaturvedi, N. (2021). Relationship between glycemia and cognitive function, structural brain outcomes, and dementia: a Mendelian randomization study in the UK Biobank. Diabetes, 70(10), 2313–2321. https://doi.org/10.2337/db20-0895
Crane, P. K., Walker, R., Hubbard, R. A., Li, G., Nathan, D. M., Zheng, H., Haneuse, S., Craft, S., Montine, T. J., Kahn, S. E., McCormick, W., McCurry, S. M., Bowen, J. D., & Larson, E. B. (2013). Glucose levels and risk of dementia. New England Journal of Medicine, 369(6), 540–548. https://doi.org/10.1056/nejmoa1215740
Msn, J. M., RN. (2024, October 3). What To Know about Type 3 Diabetes. Health. https://www.health.com/type-3-diabetes-and-alzheimers-8699666
Michailidis, M., Moraitou, D., Tata, D. A., Kalinderi, K., Papamitsou, T., & Papaliagkas, V. (2022). Alzheimer’s Disease as Type 3 Diabetes: Common Pathophysiological Mechanisms between Alzheimer’s Disease and Type 2 Diabetes. International Journal of Molecular Sciences, 23(5), 2687. https://doi.org/10.3390/ijms23052687
Ott, A., Stolk, R., Van Harskamp, F., Pols, H. P., Hofman, A., & Breteler, M. B. (1999). Diabetes mellitus and the risk of dementia. Neurology, 53(9), 1937. https://doi.org/10.1212/wnl.53.9.1937
Huang, Chiung-Chun & Lee, Cheng-Che & Hsu, Kuei-Sen. (2009). The role of insulin receptor signaling in synaptic plasticity and cognitive function. Chang Gung medical journal. 33. 115-25.
Stolk, R. P., Breteler, M. M. B., Ott, A., Pols, H. a. P., Lamberts, S. W. J., Grobbee, D. E., & Hofman, A. (1997). Insulin and cognitive function in an elderly population: the Rotterdam Study. Diabetes Care, 20(5), 792-795. https://doi.org/10.2337/diacare.20.5.792
Janson J, Butler PC. The role of insulin in the pathogenesis of Alzheimer's disease: implications for treatment. Diabetes Care. 2011;34(4):1186–1190. doi:10.2337/dc10-2414.
Nguyen, T. T., Ta, Q. T. H., Nguyen, T. K. O., Nguyen, T. T. D., & Van Giau, V. (2020). Type 3 diabetes and its role implications in Alzheimer’s disease. International Journal of Molecular Sciences, 21(9), 3165. https://doi.org/10.3390/ijms21093165
Andriuta, D., Diouf, M., Roussel, M., & Godefroy, O. (2019). Is reaction time slowing an early sign of Alzheimer’s disease? A Meta-Analysis. Dementia and Geriatric Cognitive Disorders, 47(4–6), 281–288. https://doi.org/10.1159/000500348
Reaction time test predicts risk of dementia. (2025, March 3). Centre for Healthy Brain Ageing (CHeBA). https://www.cheba.unsw.edu.au/news/reaction-time-test-predicts-risk-dementia
Kochan, N. A., Bunce, D., Pont, S., Crawford, J. D., Brodaty, H., & Sachdev, P. S. (2015). Reaction time measures Predict incident Dementia in Community-Living Older Adults: The Sydney Memory and Ageing Study. American Journal of Geriatric Psychiatry, 24(3), 221–231. https://doi.org/10.1016/j.jagp.2015.12.005
Storandt, M., & Beaudreau, S. (2004). Do reaction time measures enhance diagnosis of early-stage dementia of the Alzheimer type. Archives of Clinical Neuropsychology, 19(1), 119–124. https://doi.org/10.1093/arclin/19.1.119
Chen, K.-C., Weng, C.-Y., Hsiao, S., Tsao, W.-L. and Koo, M. (2017), Cognitive decline and slower reaction time in elderly individuals with mild cognitive impairment. Psychogeriatrics, 17: 364-370. https://doi.org/10.1111/psyg.12247
Pagán, C. (2025b, February 15). Working out regularly could lower your risk of dementia, study finds. Verywell Health. https://www.verywellhealth.com/how-regular-exercise-could-lower-your-risk-of-dementia-11679890
Amanat, S., Ghahri, S., Dianatinasab, A., Fararouei, M., Dianatinasab, M. (2020). Exercise and Type 2 Diabetes. In: Xiao, J. (eds) Physical Exercise for Human Health. Advances in Experimental Medicine and Biology, vol 1228. Springer, Singapore. https://doi.org/10.1007/978-981-15-1792-1_6
van Duinkerken, E., Steenwijk, M.D., Klein, M., Barkhof, F., Mograbi, D.C., Diamant, M., Snoek, F.J. and Ijzerman, R.G. (2018), Accelerated executive functions decline and gray matter structural changes in middle-aged type 1 diabetes mellitus patients with proliferative retinopathy. Journal of Diabetes, 10: 835-846. https://doi.org/10.1111/1753-0407.12773
Li, Z., Lin, C., Cai, X., Lv, F., Yang, W., & Ji, L. (2024). Anti-diabetic agents and the risks of dementia in patients with type 2 diabetes: a systematic review and network meta-analysis of observational studies and randomized controlled trials. Alzheimer S Research & Therapy, 16(1). https://doi.org/10.1186/s13195-024-01645-y
Defo, A. K., Bakula, V., Pisaturo, A., Labos, C., Wing, S. S., & Daskalopoulou, S. S. (2023). Diabetes, antidiabetic medications and risk of dementia: A systematic umbrella review and meta‐analysis. Diabetes Obesity and Metabolism, 26(2), 441–462. https://doi.org/10.1111/dom.15331
Xue, M., Xu, W., Ou, Y., Cao, X., Tan, M., Tan, L., & Yu, J. (2019). Diabetes mellitus and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 144 prospective studies. Ageing Research Reviews, 55, 100944. https://doi.org/10.1016/j.arr.2019.100944
McMillan, J. M., Mele, B. S., Hogan, D. B., & Leung, A. A. (2018). Impact of pharmacological treatment of diabetes mellitus on dementia risk: systematic review and meta-analysis. BMJ Open Diabetes Research & Care, 6(1), e000563. https://doi.org/10.1136/bmjdrc-2018-000563
Li, Lily et al, Increased risk of dementia in Type 1 diabetes: A systematic review with meta-analysis Diabetes Research and Clinical Practice, Volume 222, 112043
Han, S., Lelieveldt, T., Sturkenboom, M., Biessels, G. J., & Ahmadizar, F. (2025). Evaluating the causal association between Type 2 diabetes and Alzheimer’s disease: a Two-Sample Mendelian Randomization study. Biomedicines, 13(5), 1095. https://doi.org/10.3390/biomedicines13051095
Monereo-Sánchez, J., Jansen, J. F., Köhler, S., Van Boxtel, M. P., Backes, W. H., Stehouwer, C. D., Kroon, A. A., Kooman, J. P., Schalkwijk, C. G., Linden, D. E., & Schram, M. T. (2023). The association of prediabetes and type 2 diabetes with hippocampal subfields volume: The Maastricht study. NeuroImage Clinical, 39, 103455. https://doi.org/10.1016/j.nicl.2023.103455
Zahalka, S. J., Abushamat, L. A., Scalzo, R. L., & Reusch, J. E. B. (2023, January 6). The role of exercise in diabetes. Endotext - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK549946
Morrison, Steven et al., Supervised Balance Training and Wii Fit–Based Exercises Lower Falls Risk in Older Adults With Type 2 Diabetes, Journal of the American Medical Directors Association, Volume 19, Issue 2, 185.e7 - 185.e13
Views:
67
Downloads:
14
Copyright (c) 2025 Urszula Kierepka, Karolina Bieńkowska, Magdalena Rosiewicz, Jan Drzymała, Anita Janda, Sylwia Bartolik, Marcin Durowicz, Iwona Górnicka, Aleksandra Pastuszek, Radosław Pastuszek

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

