ADVERSE EFFECTS OF GLP-1 RECEPTOR AGONISTS: A COMPREHENSIVE APPROACH
Abstract
Introduction and Aim: Glucagon‑like peptide‑1 (GLP‑1) receptor agonists have recently witnessed a substantial rise in popularity. Originally developed for the treatment of type 2 diabetes mellitus (T2DM), their therapeutic indications have now broadened considerably. Their beneficial impact has been documented not only on the quality of life in patients with T2DM, but also in those with chronic kidney disease (CKD), cardiovascular disease, and obesity. These are not the only current indications for GLP‑1 analogs, and it remains to be seen what additional conditions may benefit from these agents in the future. Given their well‑documented mechanisms of action and widespread clinical use, it is im-portant to scrutinize these medications more closely. The objective of this review is to analyze the ad-verse effects associated with GLP‑1 analog therapy.
Materials and Methods: A literature search was conducted using the PubMed and Google Scholar databases, focusing on novel publications from the past five years.
Conclusions: Current evidence regarding adverse events remains inconclusive, underscoring the need for further investigation. For instance, while some studies suggest an elevated risk of thyroid cancer, other meta‑analyses draw entirely opposite conclusions. This unequivocally indicates a strong need for further analysis.
References
GBD 2019 Risk Factors Collaborators. (2020). Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. The Lancet, 396(10258), 1223–1249. https://doi.org/10.1016/S0140-6736(20)30752-2
Williams, D. M., Staff, M., Bain, S. C., & Min, T. (2022). Glucagon-like peptide-1 receptor analogues for the treatment of obesity. touchREV Endocrinology, 18(1), 43–48. https://doi.org/10.17925/EE.2022.18.1.43
Zhao, X., Wang, M., Wen, Z., Lu, Z., Cui, L., Fu, C., Xue, H., Liu, Y., & Zhang, Y. (2021). GLP-1 receptor agonists: Beyond their pancreatic effects. Frontiers in Endocrinology, 12, 721135. https://doi.org/10.3389/fendo.2021.721135
Movahednasab, M., Dianat-Moghadam, H., Khodadad, S., Nedaeinia, R., Safabakhsh, S., Ferns, G., & Salehi, R. (2025). GLP-1–based therapies for type 2 diabetes: From single, dual and triple agonists to endogenous GLP-1 production and L-cell differentiation. Diabetology & Metabolic Syndrome, 17(1), 60. https://doi.org/10.1186/s13098-025-01623-w
Liu, Q. K. (2024). Mechanisms of action and therapeutic applications of GLP-1 and dual GIP/GLP-1 receptor agonists. Frontiers in Endocrinology, 15, 1431292. https://doi.org/10.3389/fendo.2024.1431292
Cornell, S. (2020). A review of GLP-1 receptor agonists in type 2 diabetes: A focus on the mechanism of action of once-weekly agents. Journal of Clinical Pharmacy and Therapeutics, 45(Suppl 1), 17–27. https://doi.org/10.1111/jcpt.13230
Wong, H. J., Sim, B., Teo, Y. H., Teo, Y. N., Chan, M. Y., Yeo, L. L. L., Eng, P. C., Tan, B. Y. Q., Sattar, N., Dalakoti, M., & Sia, C. H. (2025). Efficacy of GLP-1 receptor agonists on weight loss, BMI, and waist circumference for patients with obesity or overweight: A systematic review, meta-analysis, and meta-regression of 47 randomized controlled trials. Diabetes Care, 48(2), 292–300. https://doi.org/10.2337/dc24-1678
Vosoughi, K., Roghani, R. S., & Camilleri, M. (2022). Effects of GLP-1 agonists on proportion of weight loss in obesity with or without diabetes: Systematic review and meta-analysis. Obesity Medicine, 35, 100456. https://doi.org/10.1016/j.obmed.2022.100456
Rivera, F. B., Cruz, L. L. A., Magalong, J. V., Ruyeras, J. M. M. J., Aparece, J. P., Bantayan, N. R. B., Lara-Breitinger, K., & Gulati, M. (2024). Cardiovascular and renal outcomes of glucagon-like peptide-1 receptor agonists among patients with and without type 2 diabetes mellitus: A meta-analysis of randomized placebo-controlled trials. American Journal of Preventive Cardiology, 18, 100679. https://doi.org/10.1016/j.ajpc.2024.100679
Singh, S., Garg, A., Tantry, U. S., Bliden, K., Gurbel, P. A., & Gulati, M. (2024). Safety and efficacy of glucagon-like peptide-1 receptor agonists on cardiovascular events in overweight or obese non-diabetic patients. Current Problems in Cardiology, 49(3), 102403. https://doi.org/10.1016/j.cpcardiol.2024.102403
Badve, S. V., Bilal, A., Lee, M. M. Y., Sattar, N., Gerstein, H. C., Ruff, C. T., McMurray, J. J. V., Rossing, P., Bakris, G., Mahaffey, K. W., Mann, J. F. E., Colhoun, H. M., Tuttle, K. R., Pratley, R. E., & Perkovic, V. (2025). Effects of GLP-1 receptor agonists on kidney and cardiovascular disease outcomes: A meta-analysis of randomised controlled trials. The Lancet Diabetes & Endocrinology, 13(1), 15–28. https://doi.org/10.1016/S2213-8587(24)00271-7
Collins, L., & Costello, R. A. (2025). Glucagon-like peptide-1 receptor agonists. In StatPearls. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK551568/
Al-Sadawi, M. A., Aslam, F. M., Tao, M., Alsaiqali, M., Almasry, I. O., Fan, R., Rashba, E. J., & Singh, A. (2023). Effects of GLP-1 agonists on mortality and arrhythmias in patients with type II diabetes. International Journal of Cardiology: Heart & Vasculature, 47, 101218. https://doi.org/10.1016/j.ijcha.2023.101218
Pan, H. C., Chen, J. Y., Chen, H. Y., Yeh, F. Y., Sun, C. Y., Huang, T. T., & Wu, V. C. (2024). GLP-1 receptor agonists’ impact on cardio-renal outcomes and mortality in T2D with acute kidney disease. Nature Communications, 15(1), 5912. https://doi.org/10.1038/s41467-024-50199-y
Berg, S., Stickle, H., Rose, S. J., & Nemec, E. C. (2025). Discontinuing glucagon-like peptide-1 receptor agonists and body habitus: A systematic review and meta-analysis. Obesity Reviews, e13929. https://doi.org/10.1111/obr.13929
Facciorusso, A., Ramai, D., Dhar, J., Samanta, J., Chandan, S., Gkolfakis, P., Crinò, S. F., Maida, M., Anderloni, A., Boskoski, I., Triantafyllou, K., Dinis-Ribeiro, M., Hassan, C., Fuccio, L., & Arvanitakis, M. (2025). Effects of glucagon-like peptide-1 receptor agonists on upper gastrointestinal endoscopy: A meta-analysis. Clinical Gastroenterology and Hepatology, 23(5), 715–725.e3. https://doi.org/10.1016/j.cgh.2024.07.021
Huang, X., Wu, M., Lin, J., Mou, L., Zhang, Y., & Jiang, J. (2024). Gastrointestinal safety evaluation of semaglutide for the treatment of type 2 diabetes mellitus: A meta-analysis. Medicine, 103(21), e38236. https://doi.org/10.1097/MD.0000000000038236
Zhang, Z., Zhang, Q., Tan, Y., Chen, Y., Zhou, X., Liu, S., & Yu, J. (2023). GLP-1RAs caused gastrointestinal adverse reactions of drug withdrawal: A systematic review and network meta-analysis. Frontiers in Endocrinology, 14, 1149328. https://doi.org/10.3389/fendo.2023.1149328
Masson, W., Lobo, M., Barbagelata, L., Lavalle-Cobo, A., & Nogueira, J. P. (2024). Acute pancreatitis due to different semaglutide regimens: An updated meta-analysis. Endocrinología, Diabetes y Nutrición, 71(3), 124–132. https://doi.org/10.1016/j.endien.2024.03.012
Aldhaleei, W. A., Abegaz, T. M., & Bhagavathula, A. S. (2024). Glucagon-like peptide-1 receptor agonists associated gastrointestinal adverse events: A cross-sectional analysis of the National Institutes of Health All of Us cohort. Pharmaceuticals, 17(2), 199. https://doi.org/10.3390/ph17020199
Osei, S. P., Akomaning, E., Florut, T. F., Sodhi, M., Lacy, B. E., Aldhaleei, W. A., & Bhagavathula, A. S. (2024). Gastrointestinal safety assessment of GLP-1 receptor agonists in the US: A real-world adverse events analysis from the FAERS database. Diagnostics, 14(24), 2829. https://doi.org/10.3390/diagnostics14242829
He, L., Wang, J., Ping, F., Yang, N., Huang, J., Li, Y., Xu, L., Li, W., & Zhang, H. (2022). Association of glucagon-like peptide-1 receptor agonist use with risk of gallbladder and biliary diseases: A systematic review and meta-analysis of randomized clinical trials. JAMA Internal Medicine, 182(5), 513–519. https://doi.org/10.1001/jamainternmed.2022.0338
Qin, J., & Song, L. (2022). Glucagon-like peptide-1 receptor agonists and cardiovascular events in patients with type 2 diabetes mellitus: A meta-analysis of double-blind, randomized, placebo-controlled clinical trials. BMC Endocrine Disorders, 22(1), 125. https://doi.org/10.1186/s12902-022-01036-0
Mullur, N., Morissette, A., Morrow, N. M., & Mulvihill, E. E. (2024). GLP-1 receptor agonist-based therapies and cardiovascular risk: A review of mechanisms. Journal of Endocrinology, 263(1), e240046. https://doi.org/10.1530/JOE-24-0046
Marso, S. P., Hardy, E., Han, J., Wang, H., & Chilton, R. J. (2018). Changes in heart rate associated with exenatide once weekly: Pooled analysis of clinical data in patients with type 2 diabetes. Diabetes Therapy, 9(2), 551–564. https://doi.org/10.1007/s13300-018-0370-z
Modestino, E. J., Bowirrat, A., Lewandrowski, K. U., Sharafshah, A., Badgaiyan, R. D., Thanos, P. K., Baron, D., Dennen, C. A., Elman, I., Sunder, K., Murphy, K. T., & Blum, K. (2024). Hemiplegic migraines exacerbated using an injectable GLP-1 agonist for weight loss. Acta Scientific Neurology, 7(5), 12–18. https://doi.org/10.31080/asne.2024.07.0731
Lu, W., Wang, S., Tang, H., Yuan, T., Zuo, W., & Liu, Y. (2025). Neuropsychiatric adverse events associated with glucagon-like peptide-1 receptor agonists: A pharmacovigilance analysis of the FDA Adverse Event Reporting System database. European Psychiatry, 68(1), e20. https://doi.org/10.1192/j.eurpsy.2024.1803
Chen, W., Cai, P., Zou, W., & Fu, Z. (2024). Psychiatric adverse events associated with GLP-1 receptor agonists: A real-world pharmacovigilance study based on the FDA Adverse Event Reporting System database. Frontiers in Endocrinology, 15, 1330936. https://doi.org/10.3389/fendo.2024.1330936
Aleman Espino, A., Aleman Espino, E., Aleman Oliva, C., Monteagudo, H., & Frontela, O. (2023). An incidental finding of a glucagon-like peptide 1 (GLP-1)-induced acute kidney injury: A case report. Cureus, 15(9), e45261. https://doi.org/10.7759/cureus.45261
Begum, F., Chang, K., Kapoor, K., Vij, R., Phadke, G., Hiser, W. M., Wanchoo, R., Sharma, P., Sutaria, N., & Jhaveri, K. D. (2024). Semaglutide-associated kidney injury. Clinical Kidney Journal, 17(9), sfae250. https://doi.org/10.1093/ckj/sfae250
Leehey, D. J., Rahman, M. A., Borys, E., Picken, M. M., & Clise, C. E. (2021). Acute kidney injury associated with semaglutide. Kidney Medicine, 3(2), 282–285. https://doi.org/10.1016/j.xkme.2020.10.008
Wei, Z. G., Wang, M. C., Zhang, H. H., Wang, Z. Y., Wang, G. N., Wei, F. X., Zhang, Y. W., Xu, X. D., & Zhang, Y. C. (2018). Efficacy and safety of lixisenatide for type 2 diabetes mellitus: A meta-analysis of randomized controlled trials. Medicine, 97(51), e13710. https://doi.org/10.1097/MD.0000000000013710
Hwang, Y. C., Kim, A., Jo, E., Yang, Y., Cho, J. H., & Lee, B. W. (2017). Effectiveness and safety of exenatide in Korean patients with type 2 diabetes inadequately controlled with oral hypoglycemic agents: An observational study in real clinical practice. BMC Endocrine Disorders, 17(1), 68. https://doi.org/10.1186/s12902-017-0220-4
Buse, J. B., Henry, R. R., Han, J., Kim, D. D., Fineman, M. S., & Baron, A. D. (2004). Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care, 27(11), 2628–2635. https://doi.org/10.2337/diacare.27.11.2628
Zhao, Z., Tang, Y., Hu, Y., Zhu, H., Chen, X., & Zhao, B. (2021). Hypoglycemia following the use of glucagon-like peptide-1 receptor agonists: A real-world analysis of post-marketing surveillance data. Annals of Translational Medicine, 9(18), 1482. https://doi.org/10.21037/atm-21-4162
Cai, C. X., Hribar, M., Baxter, S., Goetz, K., Swaminathan, S. S., Flowers, A., Brown, E. N., Toy, B., Xu, B., Chen, J., Chen, A., Wang, S., Lee, C., Leng, T., Ehrlich, J. R., Barkmeier, A., Armbrust, K. R., Boland, M. V., … Ryan, P. B. (2025). Semaglutide and nonarteritic anterior ischemic optic neuropathy. JAMA Ophthalmology, 143(4), 304–314. https://doi.org/10.1001/jamaophthalmol.2024.6555
Shor, R., Mihalache, A., Noori, A., Kohly, R. P., Popovic, M. M., & Muni, R. H. (2025). Glucagon-like peptide-1 receptor agonists and risk of neovascular age-related macular degeneration. JAMA Ophthalmology. Advance online publication. https://doi.org/10.1001/jamaophthalmol.2025.1455
Bezin, J., Gouverneur, A., Pénichon, M., Mathieu, C., Garrel, R., Hillaire-Buys, D., Pariente, A., & Faillie, J. L. (2023). GLP-1 receptor agonists and the risk of thyroid cancer. Diabetes Care, 46(2), 384–390. https://doi.org/10.2337/dc22-1148
Baxter, S. M., Lund, L. C., Andersen, J. H., Brix, T. H., Hegedüs, L., Hsieh, M. H., Su, C. T., Cheng, M. C., Chang, Z. C., Lai, E. C., Hussain, S., Chu, C., Gomes, T., Antoniou, T., Eskander, A., Bouck, Z., Tadrous, M., Bea, S., Choi, E. Y., … Pottegård, A. (2025). Glucagon-like peptide-1 receptor agonists and risk of thyroid cancer: An international multisite cohort study. Thyroid, 35(1), 69–78. https://doi.org/10.1089/thy.2024.0387
Le, T. T. B., Minh, L. H. N., Devi, P., Islam, N., & Sachmechi, I. (2024). A case report of systemic allergic reaction to the dual glucose-dependent insulinotropic polypeptide/glucagon-like peptide-1 receptor agonist tirzepatide. Cureus, 16(1), e51460. https://doi.org/10.7759/cureus.51460
Ouellette, S., Frias, G., Shah, R., Alamgir, M., & Wassef, C. (2023). Dermal hypersensitivity reaction to semaglutide: Two case reports. Journal of Drugs in Dermatology, 22(4), 413–416. https://doi.org/10.36849/JDD.6550
Su, B., Sheng, H., Zhang, M., Bu, L., Yang, P., Li, L., Li, F., Sheng, C., Han, Y., Qu, S., & Wang, J. (2015). Risk of bone fractures associated with glucagon-like peptide-1 receptor agonists’ treatment: A meta-analysis of randomized controlled trials. Endocrine, 48(1), 107–115. https://doi.org/10.1007/s12020-014-0361-4
Gatto, A., Liu, K., Milan, N., & Wong, S. (2025). The effects of GLP-1 agonists on musculoskeletal health and orthopedic care. Current Reviews in Musculoskeletal Medicine. Advance online publication. https://doi.org/10.1007/s12178-025-09978-3
Copyright (c) 2025 Natalia Sapeda, Weronika Lusarczyk, Adrianna Truszyńska-Zawisza, Karolina Gorczyca, Aleksandra Młocek, Zuzanna Romanowska, Aleksandra Białas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

