HEART RATE VARIABILITY IN ATHLETES: INDICATOR OF TRAINING LOAD, RECOVERY AND CARDIOVASCULAR HEALTH
Abstract
Introduction: Heart rate variability (HRV) is a non-invasive biomarker reflecting autonomic nervous system activity. In recent years, its use in sports medicine has increased significantly due to its usefulness in monitoring training load, recovery, and cardiovascular health in athletes.
Material and methods: This review summarizes the current state of knowledge on the physiological basis of HRV, measurement methods, and practical applications in athlete populations. This study is a literature review based on data from PubMed and Google Scholar.
Results: HRV parameters, particularly RMSSD (the square root of the mean of the squares of differences between successive RR intervals) and SDNN (the standard deviation of NN intervals), show a clear sensitivity to training intensity and recovery status. Studies show that HRV-guided training can improve performance measures such as VO₂max (maximal oxygen consumption) and reduce the risk of overtraining. HRV also responds to changes related to sleep quality, supplementation, and biofeedback interventions. Despite technological advances, there are still challenges related to standardizing measurement protocols and accuracy across devices. Low HRV is also associated with increased cardiovascular risk, which additionally creates a potential role in early detection of arrhythmia or autonomic imbalance in athletes.
Conclusions: HRV is a valuable tool in personalized training management and monitoring cardiovascular health. The use of similar measurement protocols and interpretation of trends rather than single values increases its utility in both competitive and recreational sports. Future research should seek to integrate HRV with other physiological measures and validate wearable technologies in diverse athlete populations.
References
Stein, P. K., & Pu, Y. (2012). Heart rate variability, sleep and sleep disorders. Sleep medicine reviews, 16(1), 47–66. https://doi.org/10.1016/j.smrv.2011.02.005
Arakaki, X., Arechavala, R. J., Choy, E. H., Bautista, J., Bliss, B., Molloy, C., Wu, D. A., Shimojo, S., Jiang, Y., Kleinman, M. T., & Kloner, R. A. (2023). The connection between heart rate variability (HRV), neurological health, and cognition: A literature review. Frontiers in neuroscience, 17, 1055445. https://doi.org/10.3389/fnins.2023.1055445
Pichot, V., Roche, F., Gaspoz, J. M., Enjolras, F., Antoniadis, A., Minini, P., Costes, F., Busso, T., Lacour, J. R., & Barthélémy, J. C. (2000). Relation between heart rate variability and training load in middle-distance runners. Medicine and science in sports and exercise, 32(10), 1729–1736. https://doi.org/10.1097/00005768-200010000-00011
Shaffer, F., McCraty, R., & Zerr, C. L. (2014). A healthy heart is not a metronome: an integrative review of the heart's anatomy and heart rate variability. Frontiers in psychology, 5, 1040. https://doi.org/10.3389/fpsyg.2014.01040
Romagnoli, S., Ripanti, F., Morettini, M., Burattini, L., & Sbrollini, A. (2023). Wearable and Portable Devices for Acquisition of Cardiac Signals while Practicing Sport: A Scoping Review. Sensors (Basel, Switzerland), 23(6), 3350. https://doi.org/10.3390/s23063350
Agorastos, A., Mansueto, A. C., Hager, T., Pappi, E., Gardikioti, A., & Stiedl, O. (2023). Heart Rate Variability as a Translational Dynamic Biomarker of Altered Autonomic Function in Health and Psychiatric Disease. Biomedicines, 11(6), 1591. https://doi.org/10.3390/biomedicines11061591
Turcu, A. M., Ilie, A. C., Ștefăniu, R., Țăranu, S. M., Sandu, I. A., Alexa-Stratulat, T., Pîslaru, A. I., & Alexa, I. D. (2023). The Impact of Heart Rate Variability Monitoring on Preventing Severe Cardiovascular Events. Diagnostics (Basel, Switzerland), 13(14), 2382. https://doi.org/10.3390/diagnostics13142382
Hayano, J., & Yuda, E. (2021). Assessment of autonomic function by long-term heart rate variability: beyond the classical framework of LF and HF measurements. Journal of physiological anthropology, 40(1), 21. https://doi.org/10.1186/s40101-021-00272-y
Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). Circulation, 93(5), 1043–1065. https://doi.org/10.1161/01.CIR.93.5.1043
Billman G. E. (2013). The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Frontiers in physiology, 4, 26. https://doi.org/10.3389/fphys.2013.00026
Zacher, J., Branahl, A., Predel, H. G., & Laborde, S. (2023). Effects of Covid-19 on the autonomic nervous system in elite athletes assessed by heart rate variability. Sport sciences for health, 1–12. Advance online publication. https://doi.org/10.1007/s11332-023-01067-7
Kiss, O., Sydó, N., Vargha, P., Vágó, H., Czimbalmos, C., Édes, E., Zima, E., Apponyi, G., Merkely, G., Sydó, T., Becker, D., Allison, T. G., & Merkely, B. (2016). Detailed heart rate variability analysis in athletes. Clinical autonomic research : official journal of the Clinical Autonomic Research Society, 26(4), 245–252. https://doi.org/10.1007/s10286-016-0360-z
Singstad, B. J., Azulay, N., Bjurstedt, A., Bjørndal, S. S., Drageseth, M. F., Engeset, P., Eriksen, K., Gidey, M. Y., Granum, E. O., Greaker, M. G., Grorud, A., Hewes, S. O., Hou, J., Llop Recha, A. M., Matre, C., Seputis, A., Sørensen, S. E., Thøgersen, V., Joten, V. M., Tronstad, C., … Martinsen, Ø. G. (2021). Estimation of Heart Rate Variability from Finger Photoplethysmography During Rest, Mild Exercise and Mild Mental Stress. Journal of electrical bioimpedance, 12(1), 89–102. https://doi.org/10.2478/joeb-2021-0012
Schaffarczyk, M., Rogers, B., Reer, R., & Gronwald, T. (2022). Validity of the Polar H10 Sensor for Heart Rate Variability Analysis during Resting State and Incremental Exercise in Recreational Men and Women. Sensors (Basel, Switzerland), 22(17), 6536. https://doi.org/10.3390/s22176536
Manresa-Rocamora, A., Sarabia, J. M., Javaloyes, A., Flatt, A. A., & Moya-Ramón, M. (2021). Heart Rate Variability-Guided Training for Enhancing Cardiac-Vagal Modulation, Aerobic Fitness, and Endurance Performance: A Methodological Systematic Review with Meta-Analysis. International journal of environmental research and public health, 18(19), 10299. https://doi.org/10.3390/ijerph181910299
Georgiou, K., Larentzakis, A. V., Khamis, N. N., Alsuhaibani, G. I., Alaska, Y. A., & Giallafos, E. J. (2018). Can Wearable Devices Accurately Measure Heart Rate Variability? A Systematic Review. Folia medica, 60(1), 7–20. https://doi.org/10.2478/folmed-2018-0012
Miller, D. J., Sargent, C., & Roach, G. D. (2022). A Validation of Six Wearable Devices for Estimating Sleep, Heart Rate and Heart Rate Variability in Healthy Adults. Sensors (Basel, Switzerland), 22(16), 6317. https://doi.org/10.3390/s22166317
Maggioni, M. A., Rundfeldt, L. C., Gunga, H. C., Joerres, M., Merati, G., & Steinach, M. (2020). The Advantage of Supine and Standing Heart Rate Variability Analysis to Assess Training Status and Performance in a Walking Ultramarathon. Frontiers in physiology, 11, 731. https://doi.org/10.3389/fphys.2020.00731
Plews, D. J., Laursen, P. B., Le Meur, Y., Hausswirth, C., Kilding, A. E., & Buchheit, M. (2014). Monitoring training with heart rate-variability: how much compliance is needed for valid assessment?. International journal of sports physiology and performance, 9(5), 783–790. https://doi.org/10.1123/ijspp.2013-0455
Holmes, C. J., Sherman, S. R., Hornikel, B., Cicone, Z. S., Wind, S. A., & Esco, M. R. (2020). Compliance of self-measured HRV using smartphone applications in collegiate athletes. Journal of High Technology Management Research, 31(1), 100376. https://doi.org/10.1016/j.hitech.2020.100376
Prucnal, M. A., Polak, A. G., & Kazienko, P. (2025). Improving the quality of pulse rate variability derived from wearable devices using adaptive spectrum and nonlinear filtering. Biomedical Signal Processing and Control, 102, 107336. https://doi.org/10.1016/j.bspc.2024.107336
Lundstrom, C. J., Foreman, N. A., & Biltz, G. (2023). Practices and Applications of Heart Rate Variability Monitoring in Endurance Athletes. International journal of sports medicine, 44(1), 9–19. https://doi.org/10.1055/a-1864-9726
Theurl, F., Schreinlechner, M., Sappler, N., Toifl, M., Dolejsi, T., Hofer, F., Massmann, C., Steinbring, C., Komarek, S., Mölgg, K., Dejakum, B., Böhme, C., Kirchmair, R., Reinstadler, S., & Bauer, A. (2023). Smartwatch-derived heart rate variability: a head-to-head comparison with the gold standard in cardiovascular disease. European heart journal. Digital health, 4(3), 155–164. https://doi.org/10.1093/ehjdh/ztad022
Plews, D. J., Laursen, P. B., Kilding, A. E., & Buchheit, M. (2012). Heart rate variability in elite triathletes, is variation in variability the key to effective training? A case comparison. European journal of applied physiology, 112(11), 3729–3741. https://doi.org/10.1007/s00421-012-2354-4
Granero-Gallegos, A., González-Quílez, A., Plews, D., & Carrasco-Poyatos, M. (2020). HRV-Based Training for Improving VO2max in Endurance Athletes. A Systematic Review with Meta-Analysis. International journal of environmental research and public health, 17(21), 7999. https://doi.org/10.3390/ijerph17217999
Kamandulis, S., Juodsnukis, A., Stanislovaitiene, J., Zuoziene, I. J., Bogdelis, A., Mickevicius, M., Eimantas, N., Snieckus, A., Olstad, B. H., & Venckunas, T. (2020). Daily Resting Heart Rate Variability in Adolescent Swimmers during 11 Weeks of Training. International journal of environmental research and public health, 17(6), 2097. https://doi.org/10.3390/ijerph17062097
Williams, T. D., Esco, M. R., Fedewa, M. V., & Bishop, P. A. (2020). Inter- and Intra-Day Comparisons of Smartphone-Derived Heart Rate Variability across Resistance Training Overload and Taper Microcycles. International journal of environmental research and public health, 18(1), 177. https://doi.org/10.3390/ijerph18010177
Nuuttila, O. P., Kyröläinen, H., Kokkonen, V. P., & Uusitalo, A. (2024). Morning versus Nocturnal Heart Rate and Heart Rate Variability Responses to Intensified Training in Recreational Runners. Sports medicine - open, 10(1), 120. https://doi.org/10.1186/s40798-024-00779-5
de Vries, H. J., Pennings, H. J. M., van der Schans, C. P., Sanderman, R., Oldenhuis, H. K. E., & Kamphuis, W. (2022). Wearable-Measured Sleep and Resting Heart Rate Variability as an Outcome of and Predictor for Subjective Stress Measures: A Multiple N-of-1 Observational Study. Sensors (Basel, Switzerland), 23(1), 332. https://doi.org/10.3390/s23010332
Doherty, R., Madigan, S., Warrington, G., & Ellis, J. G. (2023). Sleep and nutrition in athletes. Current Sleep Medicine Reports, 9(1), 82–89. https://doi.org/10.1007/s40675-022-00244-3
Rawji, A., Peltier, M. R., Mourtzanakis, K., Awan, S., Rana, J., Pothen, N. J., & Afzal, S. (2024). Examining the Effects of Supplemental Magnesium on Self-Reported Anxiety and Sleep Quality: A Systematic Review. Cureus, 16(4), e59317. https://doi.org/10.7759/cureus.59317
Perez-Gaido, M., Lalanza, J. F., Parrado, E., & Capdevila, L. (2021). Can HRV Biofeedback Improve Short-Term Effort Recovery? Implications for Intermittent Load Sports. Applied psychophysiology and biofeedback, 46(2), 215–226. https://doi.org/10.1007/s10484-020-09495-8
Ricciardi, D., Crispino, E., Liporace, P., Marchi, F., Sanasi, L., D'amore, M. C., Sposito, E., Italiano, E. L., Loiacono, G., Gioia, F., Picarelli, F., Calabrese, V., Ussia, G. P., & Grigioni, F. (2024). ECG screening and Sudden Cardiac Death prevention in endurance athletes. Europace, 26(Suppl 1), euae102.547. https://doi.org/10.1093/europace/euae102.547
Wundersitz, D. W. T., Wright, B. J., Gordon, B. A., Pompei, S., Lavie, C. J., Nadurata, V., Nolan, K., & Kingsley, M. I. C. (2022). Sympathovagal Balance Is a Strong Predictor of Post High-Volume Endurance Exercise Cardiac Arrhythmia. Frontiers in physiology, 13, 848174. https://doi.org/10.3389/fphys.2022.848174
Wang, W., Shao, M., Du, W., & Xu, Y. (2024). Impact of exhaustive exercise on autonomic nervous system activity: insights from HRV analysis. Frontiers in physiology, 15, 1462082. https://doi.org/10.3389/fphys.2024.1462082
Gronwald, T., Schaffarczyk, M., Reinsberger, C., & Hoos, O. (2024). Heart rate variability – Methods and analysis in sports medicine and exercise science. Deutsche Zeitschrift für Sportmedizin, 75, 113–118. https://doi.org/10.5960/dzsm.2024.595
Kaikkonen, P., Pasanen, K., Parkkari, J., Mustakoski, I., Vasankari, T., & Leppänen, M. (2025). Recovery of heart rate and heart rate variability after a maximal cardiopulmonary exercise test in novice female runners. European journal of applied physiology, 125(1), 71–79. https://doi.org/10.1007/s00421-024-05580-6
Sessa, F., Anna, V., Messina, G., Cibelli, G., Monda, V., Marsala, G., Ruberto, M., Biondi, A., Cascio, O., Bertozzi, G., Pisanelli, D., Maglietta, F., Messina, A., Mollica, M. P., & Salerno, M. (2018). Heart rate variability as predictive factor for sudden cardiac death. Aging, 10(2), 166–177. https://doi.org/10.18632/aging.101386
Anh Hoang, T., Tran, N. L., Nguyen, N. T., Huyen Hoang, L. T., Vo, N. T. M., & Nguyen, V. X. (2024). Prognosis value of heart rate variability measured by Camera HRV application in patients after acute myocardial infarction. Indian heart journal, 76(4), 306–308. https://doi.org/10.1016/j.ihj.2024.07.008
Matusik, P. S., Matusik, P. T., & Stein, P. K. (2023). Heart rate variability and heart rate patterns measured from wearable and implanted devices in screening for atrial fibrillation: potential clinical and population-wide applications. European heart journal, 44(13), 1105–1107. https://doi.org/10.1093/eurheartj/ehac546
Tekin, R. T., Kudas, S., Buran, M. M., Cabuk, S., Akbasli, O., Uludag, V., & Yosmaoglu, H. B. (2025). The relationship between resting heart rate variability and sportive performance, sleep and body awareness in soccer players. BMC sports science, medicine & rehabilitation, 17(1), 58. https://doi.org/10.1186/s13102-025-01093-7
Sundas, A., Contreras, I., Navarro-Otano, J., Soler, J., Beneyto, A., & Vehi, J. (2025). Heart rate variability over the decades: a scoping review. PeerJ, 13, e19347. https://doi.org/10.7717/peerj.19347
Neves, L. N. S., Gasparini Neto, V. H., Araujo, I. Z., Barbieri, R. A., Leite, R. D., & Carletti, L. (2022). Is There Agreement and Precision between Heart Rate Variability, Ventilatory, and Lactate Thresholds in Healthy Adults?. International journal of environmental research and public health, 19(22), 14676. https://doi.org/10.3390/ijerph192214676
Hassya, I. A., Sahroni, A., Widi Rahayu, A., & Laksono, E. D. (2022). The analysis of heart rate variability properties and body mass index in representing health quality information. Procedia Computer Science, 197, 135–142. https://doi.org/10.1016/j.procs.2021.12.127
Materko, W., Miranda, S. A. M., Bezerra, T. H. L., & de Oliveira Figueira, C. A. M. (2025). Heart rate variability in soccer players and the application of unsupervised machine learning. Exploratory Cardiology, 3, 101241. https://doi.org/10.37349/ec.2025.101241
Views:
30
Downloads:
10
Copyright (c) 2025 Katarzyna Urbańska, Anna Hawryluk, Adam Żuczek, Kinga Dyndał, Marcelina Broda, Olga Żuczek, Izabela Szczap, Kamil Marzec, Aleksandra Mokrzycka, Patrycja Jędrzejewska-Rzezak

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.