THE POTENTIAL ROLE OF METFORMIN IN THE TREATMENT OF HASHIMOTO’S THYROIDITIS: REVIEW

Keywords: Metformin, Hashimoto disease, Autoimmune disease, Thyroid, Thyroiditis

Abstract

Background: Hashimoto’s thyroiditis is one of the most common autoimmune diseases, with a noticeable increase in incidence observed in recent years. Despite its high prevalence, current treatment options remain limited and primarily focus on managing the consequences rather than addressing the underlying causes of the condition. Metformin, although primarily prescribed for diabetes, has demonstrated promising anti-inflammatory and immunoregulatory properties in several autoimmune disease models.

Aim: This review aims to evaluate the potential role of metformin in the management of Hashimoto’s thyroiditis, with a particular focus on its effects on immune regulation and thyroid function.

Methods: An electronic literature search was performed using PubMed, Cochrane Library, ScienceDirect and Evidence‑Based Medicine Reviews. Search terms included ‘Metformin’, ‘Hashimoto disease’, ‘Thyroiditis’, ‘Thyroid’, ‘autoimmune disease’ as keywords. Only articles in English were considered.

Conclusions: Preliminary data suggest that metformin, through its anti-inflammatory properties and modulation of AMPK/mTOR pathways, may influence immune responses in Hashimoto’s thyroiditis. Despite promising preclinical findings, further clinical trials involving human participants are required to evaluate its therapeutic efficacy and safety in this context.

References

Ahmad, R., & Haque, M. (2024). Metformin: Beyond Type 2 Diabetes Mellitus. Cureus, 16(10), e71730. https://doi.org/10.7759/CUREUS.71730,

Ajjan, R. A., & Weetman, A. P. (2015). The Pathogenesis of Hashimoto’s Thyroiditis: Further Developments in our Understanding. Hormone and Metabolic Research, 47(10), 702–710. https://doi.org/10.1055/S-0035-1548832,

Bailey, C. J. (2017). Metformin: historical overview. Diabetologia, 60(9), 1566–1576. https://doi.org/10.1007/S00125-017-4318-Z,

Bellan, M., Andreoli, L., Mele, C., Sainaghi, P. P., Rigamonti, C., Piantoni, S., Benedittis, C. De, Aimaretti, G., Pirisi, M., & Marzullo, P. (2020). Pathophysiological role and therapeutic implications of vitamin d in autoimmunity: Focus on chronic autoimmune diseases. Nutrients, 12(3). https://doi.org/10.3390/NU12030789,

Bułdak, Ł., Machnik, G., Bułdak, R. J., Łabuzek, K., Bołdys, A., & Okopień, B. (2016). Exenatide and metformin express their anti-inflammatory effects on human monocytes/macrophages by the attenuation of MAPKs and NFκB signaling. Naunyn-Schmiedeberg’s Archives of Pharmacology, 389(10), 1103–1115. https://doi.org/10.1007/S00210-016-1277-8,

Chae, Y. K., Arya, A., Malecek, M. K., Shin, D. S., Carneiro, B., Chandra, S., Kaplan, J., Kalyan, A., Altman, J. K., Platanias, L., & Giles, F. (2016). Repurposing metformin for cancer treatment: Current clinical studies. Oncotarget, 7(26), 40767–40780. https://doi.org/10.18632/ONCOTARGET.8194,

Chen, X., Ma, J., Yao, Y., Zhu, J., Zhou, Z., Zhao, R., Dong, X., Gao, W., Zhang, S., Huang, S., & Chen, L. (2021). Metformin prevents BAFF activation of Erk1/2 from B-cell proliferation and survival by impeding mTOR-PTEN/Akt signaling pathway. International Immunopharmacology, 96, 107771. https://doi.org/10.1016/J.INTIMP.2021.107771

Cogni, G., & Chiovato, L. (2013). An overview of the pathogenesis of thyroid autoimmunity. Hormones, 12(1), 19–29. https://doi.org/10.1007/BF03401283,

Dandona, P., Aljada, A., Ghanim, H., Mohanty, P., Tripathy, C., Hofmeyer, D., & Chaudhuri, A. (2004). Increased plasma concentration of macrophage Migration Inhibitory Factor (MIF) and MIF mRNA in mononuclear cells in the obese and the suppressive action of metformin. Journal of Clinical Endocrinology and Metabolism, 89(10), 5043–5047. https://doi.org/10.1210/JC.2004-0436,

DeFronzo, R. A., & Goodman, A. M. (1995). Efficacy of Metformin in Patients with Non-Insulin-Dependent Diabetes Mellitus. New England Journal of Medicine, 333(9), 541–549. https://doi.org/10.1056/NEJM199508313330902,

Delgoffe, G. M., Kole, T. P., Zheng, Y., Zarek, P. E., Matthews, K. L., Xiao, B., Worley, P. F., Kozma, S. C., & Powell, J. D. (2009). The mTOR Kinase Differentially Regulates Effector and Regulatory T Cell Lineage Commitment. Immunity, 30(6), 832–844. https://doi.org/10.1016/j.immuni.2009.04.014

Dornelles Severo, M., Stürmer Andrade, T., Correa Junior, V., Antonio Naujorks, A., Gus, M., & Schaan, B. D. (2018). Metformin effect on TSH in subclinical hypothyroidism: randomized, double-blind, placebo-controlled clinical trial. Endocrine, 59(1), 66–71. https://doi.org/10.1007/S12020-017-1462-7,

Dowling, R. J. O., Goodwin, P. J., & Stambolic, V. (2011). Understanding the benefit of metformin use in cancer treatment. BMC Medicine, 9. https://doi.org/10.1186/1741-7015-9-33,

Dutta, S., Shah, R. B., Singhal, S., Bansal, S., Sinha, S., Haque, M., & Dutta, S. B. (2023). Metformin: A Review of Potential Mechanism and Therapeutic Utility Beyond Diabetes. Drug Design, Development and Therapy, 17, 1907–1932. https://doi.org/10.2147/DDDT.S409373,

Dworacki, G., Urazayev, O., Bekmukhambetov, Y., Iskakova, S., Frycz, B. A., Jagodziński, P. P., & Dworacka, M. (2015). Thymic emigration patterns in patients with type 2 diabetes treated with metformin. Immunology, 146(3), 456–469. https://doi.org/10.1111/IMM.12522,

Eilenberg, W., Stojkovic, S., Piechota-Polanczyk, A., Kaider, A., Kozakowski, N., Weninger, W. J., Nanobachvili, J., Wojta, J., Huk, I., Demyanets, S., & Neumayer, C. (2017). Neutrophil gelatinase associated lipocalin (NGAL) is elevated in type 2 diabetics with carotid artery stenosis and reduced under metformin treatment. Cardiovascular Diabetology, 16(1). https://doi.org/10.1186/S12933-017-0579-6,

Flumamine, a new synthetic analgesic and anti-flu drug - PubMed. (n.d.). Retrieved June 6, 2025, from https://pubmed.ncbi.nlm.nih.gov/14779282/

Forget, P., Khalifa, C., Defour, J. P., Latinne, D., Van Pel, M. C., & De Kock, M. (2017). What is the normal value of the neutrophil-to-lymphocyte ratio? BMC Research Notes, 10(1), 1–4. https://doi.org/10.1186/S13104-016-2335-5,

Grant, C. R., Liberal, R., Mieli-Vergani, G., Vergani, D., & Longhi, M. S. (2015). Regulatory T-cells in autoimmune diseases: Challenges, controversies and—yet—unanswered questions. Autoimmunity Reviews, 14(2), 105–116. https://doi.org/10.1016/J.AUTREV.2014.10.012

Hwangbo, Y., & Park, Y. J. (2018). Genome-wide association studies of autoimmune thyroid diseases, thyroid function, and thyroid cancer. Endocrinology and Metabolism, 33(2), 175–184. https://doi.org/10.3803/ENM.2018.33.2.175,

Ibáñez, L., Jaramillo, A. M., Ferrer, A., & de Zegher, F. (2005). High neutrophil count in girls and women with hyperinsulinaemic hyperandrogenism: Normalization with metformin and flutamide overcomes the aggravation by oral contraception. Human Reproduction, 20(9), 2457–2462. https://doi.org/10.1093/HUMREP/DEI072,

Jia, X., Zhai, T., Qu, C., Ye, J., Zhao, J., Liu, X., Zhang, J. A., & Qian, Q. (2021). Metformin Reverses Hashimoto’s Thyroiditis by Regulating Key Immune Events. Frontiers in Cell and Developmental Biology, 9. https://doi.org/10.3389/FCELL.2021.685522/PDF

Jin, B., Wang, S., & Fan, Z. (2022). Pathogenesis Markers of Hashimoto’s Disease—A Mini Review. Frontiers in Bioscience - Landmark, 27(10). https://doi.org/10.31083/J.FBL2710297,

Jing, Y., Wu, F., Li, D., Yang, L., Li, Q., & Li, R. (2018). Metformin improves obesity-associated inflammation by altering macrophages polarization. Molecular and Cellular Endocrinology, 461, 256–264. https://doi.org/10.1016/j.mce.2017.09.025

Kelly, B., Tannahill, G. M., Murphy, M. P., & O’Neill, L. A. J. (2015). Metformin inhibits the production of reactive oxygen species from NADH: Ubiquinone oxidoreductase to limit induction of interleukin-1β (IL-1β) and boosts interleukin-10 (IL-10) in lipopolysaccharide (LPS)-activated macrophages. Journal of Biological Chemistry, 290(33), 20348–20359. https://doi.org/10.1074/jbc.M115.662114

Kim, K. (2024). Rethinking about Metformin: Promising Potentials. Korean Journal of Family Medicine, 45(5). https://doi.org/10.4082/KJFM.24.0156,

Kimura, T., Van Keymeulen, A., Golstein, J., Fusco, A., Dumont, J. E., & Roger, P. P. (2001). Regulation of thyroid cell proliferation by tsh and other factors: A critical evaluation of in vitro models. Endocrine Reviews, 22(5), 631–656. https://doi.org/10.1210/EDRV.22.5.0444,

Klubo-Gwiezdzinska, J., & Wartofsky, L. (2022). Hashimoto thyroiditis: an evidence-based guide to etiology, diagnosis and treatment. Polish Archives of Internal Medicine, 132(3). https://doi.org/10.20452/PAMW.16222,

Krysiak, R., Okrzesik, J., & Okopien, B. (2015). Different Effects of Metformin on the Hypothalamic-Pituitary-Thyroid Axis in Bromocriptine- and Cabergoline-treated Patients with Hashimoto’s Thyroiditis and Glucose Metabolism Abnormalities. Experimental and Clinical Endocrinology and Diabetes, 123(9), 561–566. https://doi.org/10.1055/S-0035-1564073,

Krysiak, R., Szkróbka, W., & Okopień, B. (2016). Sex-dependent effect of metformin on hypothalamic-pituitary-thyroid axis activity in patients with subclinical hypothyroidism. Pharmacological Reports, 68(6), 1115–1119. https://doi.org/10.1016/J.PHAREP.2016.07.002,

Lai, Z. W., Hanczko, R., Bonilla, E., Caza, T. N., Clair, B., Bartos, A., Miklossy, G., Jimah, J., Doherty, E., Tily, H., Francis, L., Garcia, R., Dawood, M., Yu, J., Ramos, I., Coman, I., Faraone, S. V., Phillips, P. E., & Perl, A. (2012). N-acetylcysteine reduces disease activity by blocking mammalian target of rapamycin in T cells from systemic lupus erythematosus patients: A randomized, double-blind, placebo-controlled trial. Arthritis and Rheumatism, 64(9), 2937–2946. https://doi.org/10.1002/ART.34502,

Lee, H. J., Li, C. W., Hammerstad, S. S., Stefan, M., & Tomer, Y. (2015). Immunogenetics of autoimmune thyroid diseases: A comprehensive review. Journal of Autoimmunity, 64, 82–90. https://doi.org/10.1016/j.jaut.2015.07.009

Lee, S.-Y., Moon, S.-J., Kim, E.-K., Seo, H.-B., Yang, E.-J., Son, H.-J., Kim, J.-K., Min, J.-K., Park, S.-H., & Cho, M.-L. (2017). Metformin Suppresses Systemic Autoimmunity in Roquinsan/san Mice through Inhibiting B Cell Differentiation into Plasma Cells via Regulation of AMPK/mTOR/STAT3 . The Journal of Immunology, 198(7), 2661–2670. https://doi.org/10.4049/JIMMUNOL.1403088,

Leng, L., Chen, L., Fan, J., Greven, D., Arjona, A., Du, X., Austin, D., Kashgarian, M., Yin, Z., Huang, X. R., Lan, H. Y., Lolis, E., Nikolic-Paterson, D., & Bucala, R. (2011). A Small-Molecule Macrophage Migration Inhibitory Factor Antagonist Protects against Glomerulonephritis in Lupus-Prone NZB/NZW F1 and MRL/ lpr Mice . The Journal of Immunology, 186(1), 527–538. https://doi.org/10.4049/JIMMUNOL.1001767,

Menegazzo, L., Ciciliot, S., Poncina, N., Mazzucato, M., Persano, M., Bonora, B., Albiero, M., Vigili de Kreutzenberg, S., Avogaro, A., & Fadini, G. P. (2015). NETosis is induced by high glucose and associated with type 2 diabetes. Acta Diabetologica, 52(3), 497–503. https://doi.org/10.1007/S00592-014-0676-X,

Menegazzo, L., Scattolini, V., Cappellari, R., Bonora, B. M., Albiero, M., Bortolozzi, M., Romanato, F., Ceolotto, G., Vigili de Kreutzeberg, S., Avogaro, A., & Fadini, G. P. (2018). The antidiabetic drug metformin blunts NETosis in vitro and reduces circulating NETosis biomarkers in vivo. Acta Diabetologica, 55(6), 593–601. https://doi.org/10.1007/S00592-018-1129-8,

Mikulska, A. A., Karaźniewicz-łada, M., Filipowicz, D., Ruchała, M., & Główka, F. K. (2022). Metabolic Characteristics of Hashimoto’s Thyroiditis Patients and the Role of Microelements and Diet in the Disease Management—An Overview. International Journal of Molecular Sciences, 23(12). https://doi.org/10.3390/IJMS23126580,

Noack, M., & Miossec, P. (2014). Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmunity Reviews, 13(6), 668–677. https://doi.org/10.1016/j.autrev.2013.12.004

Park, S. Y., Lee, S. W., Lee, S. Y., Hong, K. W., Bae, S. S., Kim, K., & Kim, C. D. (2017). SIRT1/Adenosine monophosphate-activated protein Kinase α signaling enhances macrophage polarization to an anti-inflammatory phenotype in rheumatoid arthritis. Frontiers in Immunology, 8(SEP). https://doi.org/10.3389/FIMMU.2017.01135,

Pyzik, A., Grywalska, E., Matyjaszek-Matuszek, B., & Roliński, J. (2015). Immune disorders in Hashimoto’s thyroiditis: What do we know so far? Journal of Immunology Research, 2015. https://doi.org/10.1155/2015/979167,

Ragusa, F., Fallahi, P., Elia, G., Gonnella, D., Paparo, S. R., Giusti, C., Churilov, L. P., Ferrari, S. M., & Antonelli, A. (2019). Hashimotos’ thyroiditis: Epidemiology, pathogenesis, clinic and therapy. Best Practice and Research: Clinical Endocrinology and Metabolism, 33(6). https://doi.org/10.1016/j.beem.2019.101367

Ralli, M., Angeletti, D., Fiore, M., D’Aguanno, V., Lambiase, A., Artico, M., de Vincentiis, M., & Greco, A. (2020). Hashimoto’s thyroiditis: An update on pathogenic mechanisms, diagnostic protocols, therapeutic strategies, and potential malignant transformation. Autoimmunity Reviews, 19(10). https://doi.org/10.1016/j.autrev.2020.102649

Rena, G., Hardie, D. G., & Pearson, E. R. (2017). The mechanisms of action of metformin. Diabetologia, 60(9), 1577–1585. https://doi.org/10.1007/S00125-017-4342-Z,

Sahra, I. Ben, Regazzetti, C., Robert, G., Laurent, K., Le Marchand-Brustel, Y., Auberger, P., Tanti, J. F., Giorgetti-Peraldi, S., & Bost, F. (2011). Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Research, 71(13), 4366–4372. https://doi.org/10.1158/0008-5472.CAN-10-1769,

Saleiro, D., & Platanias, L. C. (2015). Intersection of mTOR and STAT signaling in immunity. Trends in Immunology, 36(1), 21–29. https://doi.org/10.1016/j.it.2014.10.006

Santos, L. R., Durães, C., Ziros, P. G., Pestana, A., Esteves, C., Neves, C., Carvalho, D., Bongiovanni, M., Renaud, C. O., Chartoumpekis, D. V., Habeos, I. G., Simões, M. S., Soares, P., & Sykiotis, G. P. (2019). Interaction of genetic variations in nfe2l2 and selenos modulates the risk of hashimoto’s thyroiditis. Thyroid, 29(9), 1302–1315. https://doi.org/10.1089/THY.2018.0480,

Singh, R. P., Hasan, S., Sharma, S., Nagra, S., Yamaguchi, D. T., Wong, D. T. W., Hahn, B. H., & Hossain, A. (2014). Th17 cells in inflammation and autoimmunity. Autoimmunity Reviews, 13(12), 1174–1181. https://doi.org/10.1016/j.autrev.2014.08.019

Sugawara, K., & Ogawa, W. (2023). New mechanism of metformin action mediated by lysosomal presenilin enhancer 2. Journal of Diabetes Investigation, 14(1), 12–14. https://doi.org/10.1111/JDI.13925,

[Treatment of diabetes mellitus with N,N-dimethylguanylguanidine (LA. 6023, glucophage)] - PubMed. (n.d.). Retrieved June 6, 2025, from https://pubmed.ncbi.nlm.nih.gov/13834497/

Tywanek, E., Michalak, A., Świrska, J., & Zwolak, A. (2024). Autoimmunity, New Potential Biomarkers and the Thyroid Gland—The Perspective of Hashimoto’s Thyroiditis and Its Treatment. International Journal of Molecular Sciences, 25(9), 4703. https://doi.org/10.3390/IJMS25094703

Ursini, F., Russo, E., Pellino, G., D’Angelo, S., Chiaravalloti, A., De Sarro, G., Manfredini, R., & De Giorgio, R. (2018). Metformin and Autoimmunity: A “New Deal” of an Old Drug. Frontiers in Immunology, 9(JUN), 1236. https://doi.org/10.3389/FIMMU.2018.01236

Vasamsetti, S. B., Karnewar, S., Kanugula, A. K., Thatipalli, A. R., Kumar, J. M., & Kotamraju, S. (2015). Metformin inhibits monocyte- To-macrophage differentiation via AMPK-mediated inhibition of STAT3 activation: Potential role in atherosclerosis. Diabetes, 64(6), 2028–2041. https://doi.org/10.2337/DB14-1225,

Vezza, T., Luna-Marco, C., Rovira-Llopis, S., & Víctor, V. M. (2023). Metformin and its redox-related mechanisms of action in type 2 diabetes. Redox Experimental Medicine, 2023(1). https://doi.org/10.1530/REM-23-0015

Vigersky, R. A., Filmore-Nassar, A., & Glass, A. R. (2006). Thyrotropin suppression by metformin. Journal of Clinical Endocrinology and Metabolism, 91(1), 225–227. https://doi.org/10.1210/JC.2005-1210,

Wang, H., Li, T., Chen, S., Gu, Y., & Ye, S. (2015). Neutrophil extracellular trap mitochondrial DNA and its autoantibody in systemic lupus erythematosus and a proof-of-concept trial of metformin. Arthritis and Rheumatology, 67(12), 3190–3200. https://doi.org/10.1002/ART.39296,

Weetman, A. P. (2021). An update on the pathogenesis of Hashimoto’s thyroiditis. Journal of Endocrinological Investigation, 44(5), 883–890. https://doi.org/10.1007/S40618-020-01477-1,

Werner, E. A., & Bell, J. (1922). CCXIV.—The preparation of methylguanidine, and of ββ-dimethylguanidine by the interaction of dicyanodiamide, and methylammonium and dimethylammonium chlorides respectively. Journal of the Chemical Society, Transactions, 121(0), 1790–1794. https://doi.org/10.1039/CT9222101790

Wong, S. L., Demers, M., Martinod, K., Gallant, M., Wang, Y., Goldfine, A. B., Kahn, C. R., & Wagner, D. D. (2015). Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nature Medicine, 21(7), 815–819. https://doi.org/10.1038/NM.3887,

Wrońska, K., Hałasa, M., & Szczuko, M. (2024). The Role of the Immune System in the Course of Hashimoto’s Thyroiditis: The Current State of Knowledge. International Journal of Molecular Sciences, 25(13). https://doi.org/10.3390/IJMS25136883,

Wu, Y., Chen, Y., Yang, X., Chen, L., & Yang, Y. (2016). Neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) were associated with disease activity in patients with systemic lupus erythematosus. International Immunopharmacology, 36, 94–99. https://doi.org/10.1016/j.intimp.2016.04.006

Xiao, N., Wang, J., Wang, T., Xiong, X., Zhou, J., Su, X., Peng, J., Yang, C., Li, X., Lin, G., Lu, G., Gong, F., & Cheng, L. (2022). Metformin abrogates pathological TNF-α-producing B cells through mTOR-dependent metabolic reprogramming in polycystic ovary syndrome. ELife, 11, e74713. https://doi.org/10.7554/ELIFE.74713

Yang, H., Biermann, M. H., Brauner, J. M., Liu, Y., Zhao, Y., & Herrmann, M. (2016). New insights into neutrophil extracellular traps: Mechanisms of formation and role in inflammation. Frontiers in Immunology, 7(AUG). https://doi.org/10.3389/FIMMU.2016.00302,

Yin, Y., Choi, S. C., Xu, Z., Perry, D. J., Seay, H., Croker, B. P., Sobel, E. S., Brusko, T. M., & Morel, L. (2015). Normalization of CD4+ T cell metabolism reverses lupus. Science Translational Medicine, 7(274). https://doi.org/10.1126/SCITRANSLMED.AAA0835,

Yu, Y., & Su, K. (2013). Neutrophil Extracellular Traps and Systemic Lupus Erythematosus. Journal of Clinical & Cellular Immunology, 4(02). https://doi.org/10.4172/2155-9899.1000139

Zamanian, M. Y., Golmohammadi, M., Yumashev, A., Hjazi, A., Toama, M. A., AbdRabou, M. A., Gehlot, A., Alwaily, E. R., Shirsalimi, N., Yadav, P. K., & Moriasi, G. (2024). Effects of metformin on cancers in experimental and clinical studies: Focusing on autophagy and AMPK/mTOR signaling pathways. Cell Biochemistry and Function, 42(4). https://doi.org/10.1002/CBF.4071,

Zhao, L., Wu, Q., Wang, X., Wang, S., Shi, X., Shan, Z., & Teng, W. (2021). Reversal of Abnormal CD4+ T Cell Metabolism Alleviates Thyroiditis by Deactivating the mTOR/HIF1a/Glycolysis Pathway. Frontiers in Endocrinology, 12. https://doi.org/10.3389/FENDO.2021.659738,

Views:

16

Downloads:

11

Published
2025-09-30
Citations
How to Cite
Gabriela Kapłon, Weronika Perczyńska, Julia Szczotka, Gabriela Szpila, Remigiusz Flakus, Żaneta Kania, Aleksandra Sokół, Dominika Gieroba, Anna Kamieniak, Karolina Glajcar, Artur Tumiński, & Marianna Chmiel. (2025). THE POTENTIAL ROLE OF METFORMIN IN THE TREATMENT OF HASHIMOTO’S THYROIDITIS: REVIEW. International Journal of Innovative Technologies in Social Science, 5(3(47). https://doi.org/10.31435/ijitss.3(47).2025.3831

Most read articles by the same author(s)